Course Number
Primary Program
Applied and Computational Mathematics
Course Format
Online, Virtual Live

This rigorous course in probability covers probability space, random variables, functions of random variables, independence and conditional probabilities, moments, joint distributions, multivariate random variables, conditional expectation and variance, distributions with random parameters, posterior distributions, probability generating function, moment generating function, characteristic function, random sum, types of convergence and relation between convergence concepts, law of large numbers and central limit theorem (i.i.d. and non- i.i.d. cases), Borel-Cantelli Lemmas, well-known discrete and continuous distributions, homogeneous Poisson process (HPP), non-homogeneous Poisson process (NHPP), and compound Poisson process. This course is proof oriented. The primary purpose of this course is to lay the foundation for the second course, EN.625.722 Probability and Stochastic Process II, and other specialized courses in probability. Note that, in contrast to EN.625.728, this course is largely a non-measure theoretic approach to probability.

Course Prerequisite(s)

Multivariate calculus and EN.625.603 Statistical Methods and Data Analysis or equivalent

Course Offerings

There are no sections currently offered, however you can view a sample syllabus from a prior section of this course.