A message for engineers, scientists, and others interested in advancing their careers through professional development:

We look forward to welcoming you to Johns Hopkins Engineering for Professionals (EP). Part of The Johns Hopkins University’s Whiting School of Engineering, EP is recognized as one of the nation’s leading programs in advanced engineering education for working engineers. You can see why as you explore this catalog, discovering the many graduate-level degrees, certificates, and courses we offer, both online and at a number of convenient locations throughout the Baltimore-Washington region.

Since 1912, The Johns Hopkins University has actively promoted continuing education in engineering, making education accessible to our community’s workforce. Today, the Whiting School’s Engineering for Professionals program has grown in size and scope to encompass 15 master’s degree programs as well as a number of advanced certificates.

Our growth and success result from our commitment to provide lifelong learning through courses that balance theory with practice and teach fundamentals in the context of how they can be applied in the “real world.” The key to this is the quality of our faculty. As active practitioners and researchers in some of the region’s leading private and government organizations, they enrich our courses with their up-to-the-minute knowledge and unique experiences. While giving students a strong command of underlying principles, our instructors also impart the practical knowledge students need to keep abreast of current technologies and approach their work in innovative ways. By constantly adapting to meet the educational requirements of the motivated, working engineers who come to us as students, and by consulting with industry leaders to anticipate their needs as well, EP functions as a highly effective professional development tool.

Last year, we added a new master’s degree program in Information Assurance and a new post-graduate certificate in Climate Change, Energy, and Environmental Sustainability. We also continue to increase our online course offerings, with more than 60 courses now online in a number of program areas. We also offer two additional master’s degree programs fully online: Systems Engineering and Computer Science. These join the existing online master’s degree programs in Environmental Planning and Management and Bioinformatics. Visit our website for updates on these and other programs at ep.jhu.edu.

In keeping with the Whiting School’s vision statement, “Leadership Through Innovation,” we believe that an advanced degree or certificate from Johns Hopkins empowers our students to innovate and to lead, by giving them a high level of expertise and a sure grasp of how to apply it.

I urge you to advance your career by becoming one of our colleagues in the Hopkins engineering community.

Nicholas P. Jones
Benjamin T. Rome Dean
Whiting School of Engineering
Academic and Registration Calendar

Academic Year 2010–2011

<table>
<thead>
<tr>
<th>Important Semester Dates:</th>
<th>Summer 2010</th>
<th>Fall 2010</th>
<th>Spring 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Day of Classes</td>
<td>June 1</td>
<td>September 1</td>
<td>January 31</td>
</tr>
<tr>
<td>Last Day of Classes</td>
<td>August 23</td>
<td>December 13</td>
<td>May 14</td>
</tr>
<tr>
<td>Graduation Application Deadlines</td>
<td>August 15</td>
<td>December 1</td>
<td>May 1</td>
</tr>
<tr>
<td>Holidays</td>
<td>July 5</td>
<td>November 24–28</td>
<td>March 21–27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registration Deadlines:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Opens</td>
<td>March 25</td>
<td>June 24</td>
<td>October 28, 2010</td>
</tr>
<tr>
<td>Registration Closes</td>
<td>May 28</td>
<td>August 27</td>
<td>January 28, 2011</td>
</tr>
<tr>
<td>Final Day to Add</td>
<td>2nd class meeting</td>
<td>September 14</td>
<td>February 5, 2011</td>
</tr>
<tr>
<td>Withdraw/Audit Deadline</td>
<td>9th class meeting</td>
<td>November 26</td>
<td>April 11, 2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Online Course Deadlines:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline to Register</td>
<td>May 19</td>
<td>August 20</td>
<td>January 20</td>
</tr>
<tr>
<td>Final Day to Add</td>
<td>June 8</td>
<td>September 8</td>
<td>February 5</td>
</tr>
<tr>
<td>Withdraw/audit deadline</td>
<td>9th week of class</td>
<td>November 26</td>
<td>April 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuition Payment Deadlines</th>
<th>June 15</th>
<th>September 15</th>
<th>February 7, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There will be a $125 late fee if tuition is not paid by due date.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Student Advising Session:

- APL: August 23, 4:30–6:00 pm
- MCC: August 24, 5:00–6:30 pm
- APL: January 24, 2011, 4:30–6:00 pm
- MCC: January 25, 2011, 5:00–6:30 pm

Whiting School Graduate Ceremony is Wednesday, May 25, 2011.
University Commencement Day is Thursday, May 26, 2011.
General Information and Requests
Admissions/Registration (Dorsey Student Services Center) 410-516-2300

Education Centers
Applied Physics Lab (from Baltimore) .. 443-778-6510
(from Washington) ... 240-228-6510
Crystal City Center .. 240-228-2912
Dorsey Student Services Center .. 410-516-2300
Higher Education and Conference Center @ HEAT .. 443-360-9200
Homewood Campus ... 410-516-8000
Montgomery County Campus ... 301-294-7070
Southern Maryland Center .. 301-737-2500
Washington D.C. Center .. 202-588-0590

Student Services
Disability Services ... 410-516-2270
Financial Aid (146 Garland Hall) .. 410-516-8028
International Office .. 410-516-1013
JH Student Assistance Program ... 443-287-7000
University Registrar (75 Garland Hall) .. 410-516-8083
Student Accounts (EP) .. 410-516-2276
Student Accounts (Homewood) ... 410-516-8158
Transcripts (75 Garland Hall) .. 410-516-7088
Veterans Certification (75 Garland Hall) ... 410-516-7071

Online Information
Catalog .. catalog.ep.jhu.edu
Application for Admission ... ep.jhu.edu/apply/
Course Schedule .. ep.jhu.edu/schedule
Graduation Information .. ep.jhu.edu/graduation
EP Forms ... ep.jhu.edu/student-forms

Textbooks
All Locations .. ep.jhu.edu/textbooks

The Johns Hopkins University (276-280) is published four times a year by The Johns Hopkins University, Office of Marketing and Creative Services, 901 S. Bond Street, Suite 540, Baltimore, MD 21231. Issued in June, August and twice in April. Periodicals postage paid at Baltimore, Maryland, and additional mailing offices. New Series 2010, No. 2, Vol. 130, April 2010. Postmaster: Send address changes to The Johns Hopkins University, Engineering for Professionals, 6810 Deerpath Road, Suite 100, Elkridge, MD 21075.
Engineering Administration

Whiting School of Engineering
Nicholas P. Jones, Benjamin T. Rome Dean

Engineering for Professionals
Allan W. Bjerkas, Associate Dean
Alison Milligan, Executive Director
Priyanka Dwivedi, Admissions Manager
Marielle Nuzback, Administration and Finance Manager
Stephen Sattler, Director of Marketing and Communications
Doug Schiller, Director of Registration
Hugh Taylor, Information Technology Manager

APL Education Center
Ellen Elliott, Director
Tracy Gauthier, Operations Coordinator

Graduate Program Administration
Hedy V. Alavi
Program Chair, Environmental Engineering, Science, and Management

Annalingam Anandarajah
Program Chair, Civil Engineering

Dilip Asthagiri
Program Chair, Chemical and Biomolecular Engineering

Robert C. Cammarata
Program Chair, Materials Science and Engineering

Harry K. Charles Jr.
Program Chair, Applied Physics

Ronald R. Luman
Program Chair, Systems Engineering

Russell L. McCally
Program Chair, Applied Biomedical Engineering

Ralph D. Semmel
Program Chair, Computer Science
Program Chair, Information Assurance
Program Chair, Information Systems Engineering

K. T. Ramesh
Program Chair, Mechanical Engineering

Dexter G. Smith
Program Chair, Electrical and Computer Engineering

James C. Spall
Program Chair, Applied and Computational Mathematics

Joseph J. Suter
Program Chair, Technical Management
Table of Contents

Academic and Registration Calendar ... ii
Contact Information .. iii
Engineering Administration .. iv

The Johns Hopkins Distinction ... 1
Whiting School of Engineering .. 1

Graduate Programs

Chart: Graduate Degree Offerings by Location .. 2

Degrees and Certificates

- Master of Science ... 3
- Master of Engineering .. 3
- Advanced Certificate for Post-Master’s Study .. 3
- Graduate Certificate ... 3
- Non-Degree-Seeking Students ... 3

Admission Requirements

- Master's Degree Candidate .. 3
- Advanced Certificate for Post-Master's Study Candidate 3
- Graduate Certificate Candidate .. 4
- Special Student ... 4
- Application Procedures .. 4
- Readmission ... 4
- Admission to Other Divisions of the University .. 4
- International Applicants ... 4
- International Credential Evaluation ... 5
- English Proficiency ... 5
- Requests to Change Program of Study ... 5

Registration

- Course Schedule ... 5
- Course Numbering System .. 5
- Course Credit ... 5
- Web Registration .. 5
- Registering for Online Courses ... 6
- Late Registration ... 6
- New Applicants .. 6
- Interdivisional Registration .. 6
- Course Enrollment Limits .. 6
- Course Load .. 6
- Auditors .. 6
- Adding and Dropping Courses .. 6
- Textbooks ... 6

Academic Regulations

- Advisors and Program Planning .. 6
- Probation and Dismissal .. 7
- Second Master’s Degree .. 7
- Time Limitation ... 7
- Leave of Absence ... 7
- Transfer Courses .. 8
- Graduation .. 8
- Grading System .. 8
- Incompletes ... 8
- Grade Reports ... 8
Table of Contents

Grade Appeals .. 9
Student Attendance .. 9
Academic Misconduct ... 9
Violations of Academic Integrity 9
Copyright Violations .. 9
Computer Usage .. 9

Tuition and Fees
Tuition ... 10
Application Fee .. 10
Graduation Fee .. 10
Late Tuition Payment Fee ... 10
Transfer Credit Fee .. 10
Fee for Removal of an Incomplete Grade 10
Refund Policy ... 10

Chart: Refund Schedule ... 10

Financial Aid and Veterans Benefits 10
Definition of Full-Time, Half-Time, and Part-Time Enrollment 10
Veterans Benefits .. 10

Facilities and Student Services 11
Student ID JCards ... 11
Transcripts ... 11
International Student Services 11
Services for Students with Disabilities 11
JH Student Assistance Program 12
Inclement Weather .. 12
Web-based Student Directory 12
Computers ... 12

The Homewood Campus ... 13
Libraries ... 13
Textbooks .. 13
Johns Hopkins Merchandise ... 13
Hopkins Student Union .. 13
Security Services ... 13
Parking ... 13

Applied Physics Laboratory Education Center 13
Computers ... 13
Parking ... 13

Montgomery County Campus ... 14
Library ... 14
Computers ... 14
Cafe ... 14
Parking ... 14

Dorsey Student Services Center 14

Southern Maryland Higher Education Center 14

Washington D.C. Center ... 14

Crystal City Center .. 14
Higher Education and Conference Center@HEAT 15

Online Courses ... 15
Registration Deadlines ... 15
Online Orientation .. 15
Textbooks for Online Courses 15

Inter-Site Links ... 15

Applied and Computational Mathematics 16

Applied Biomedical Engineering 26

Applied Physics .. 32
providing current e-mail and mailing address information to the university administrative offices. For announcing changes of this nature, including, but not exclusive to, e-mail and/or paper notice. Students are responsible for providing current e-mail and mailing address information to the university administrative offices.

Information in this catalog is current as of publication in Spring 2010. For updates, please refer to the online version at catalog.ep.jhu.edu.

The university of necessity reserves the freedom to change without notice any programs, requirements, or regulations published in this catalog. This catalog is not to be regarded as a contract. Multiple means of communication may be used by the university for announcing changes of this nature, including, but not exclusive to, e-mail and/or paper notice. Students are responsible for providing current e-mail and mailing address information to the university administrative offices.
EP instructor Horace Malcom engages in classroom discussion with students Charles Anderson and Suma Subbarao

EP students Rachel Granico, Jonathan Fosdal, Brian Bubnash, Craig Kaplan, and Manuel Cruz collaborate on a project with Computer Science instructor J. Miller Whisnant
The Johns Hopkins Distinction

Since the beginning of the 20th century, The Johns Hopkins University has been a leader in providing working adults with opportunities to continue their engineering education on a part-time basis. The Whiting School’s Engineering for Professionals (EP) program maintains as its core mission a dedication to professionals whose personal and career goals include continuing education.

“Expertise Applied” is how Engineering for Professionals defines its commitment to students. The Johns Hopkins community of expertise means that students attend classes taught by faculty who are at the top of their respective fields, benefit from the high caliber of classroom interaction, and have access to exemplary administrative services. Consequently, the programs are among the largest such programs in the nation, attesting to the students’ enthusiasm for the programs as well as the Whiting School’s commitment to engineers and scientists who pursue study after working hours.

As it has grown, Engineering for Professionals has extended its reach into the surrounding community, providing students a variety of classroom locations, as well as selected online courses, suited to their academic needs and busy schedules. Graduate students take courses throughout Maryland at the Homewood campus in Baltimore, the Applied Physics Laboratory in Laurel, the Montgomery County Campus in Rockville, the Dorsey Center near Baltimore/Washington International Thurgood Marshall Airport, the Southern Maryland Higher Education Center in St. Mary’s County, the Washington Center in Washington, D.C., the Higher Education and Conference Center @ HEAT in Harford County, and the Crystal City Center in Arlington, Virginia. Students take courses weekdays during the late afternoon and evening, on Saturday, or online.

Accredited by the Middle States Commission on Higher Education, The Johns Hopkins University is privately endowed. Founded in 1876 as the first American educational institution dedicated to research, it established the model for advanced study in this country.

Nine divisions of the university grant degrees. They are the Whiting School of Engineering, the Krieger School of Arts and Sciences, and the School of Education on the Homewood campus; the schools of Medicine and Nursing and the Bloomberg School of Public Health adjacent to The Johns Hopkins Hospital; the Peabody Institute and the Carey Business School in downtown Baltimore; and The Paul H. Nitze School of Advanced International Studies based in Washington, D.C. (with foreign study centers in Bologna, Italy, and Nanjing, China). The 10th division of the university is the Applied Physics Laboratory (APL), a research institute located in Laurel, Maryland.

Whiting School of Engineering

The school consists of the following departments: Applied Mathematics and Statistics, Chemical and Biomolecular Engineering, Civil Engineering, Computer Science, Electrical and Computer Engineering, Geography and Environmental Engineering, Materials Science and Engineering, Mechanical Engineering, and, in collaboration with the School of Medicine, and Biomedical Engineering. Information about full-time education may be found in the Johns Hopkins University Arts and Sciences/Engineering catalog, on the web at www.jhu.edu/registrar/catalog.pdf. Admission information for full-time undergraduate education is available from the Office of Admissions, Mason Hall, 3400 N. Charles Street, Homewood campus, 410-516-8171. For full-time graduate education, students should contact the department in which they are interested.

The university has offered part-time engineering education since before World War I. Over the intervening decades, thousands of working engineers and scientists have earned graduate and undergraduate degrees through part-time study, achieving personal and professional goals without interrupting their careers. Today, through the Johns Hopkins Engineering for Professionals program, the Whiting School continues the university’s tradition of offering advanced engineering education to working professionals.

EP courses are continually updated for relevance, addressing industry trends and the latest advances in engineering and applied science fields. Classes are scheduled at convenient times during late afternoons, evenings, Saturdays and at a number of locations throughout the Baltimore-Washington region. Also, each year, EP offers an increasing number of courses and degree programs online to allow professionals who cannot attend classes at our education centers the ability to advance their education.
Graduate Programs

Graduate students in the Engineering for Professionals program constitute one of the nation’s largest student bodies in continuing engineering education at the master’s degree level. Graduate courses are offered at eight locations and online. Students receive individual attention from their advisors and instructors and benefit from small classes and well-equipped laboratory, computing, and classroom facilities.

Graduate programs leading to master’s degrees are offered at the locations shown in the table below.

Almost all courses are scheduled in the late afternoon or evening Monday through Friday, on Saturday, or online, so that students can further their education without interrupting their careers. Graduate students may take courses at any Hopkins location listed in the table at the end of this section. Please note that not all courses are offered at all locations.

The university is accredited by the Middle States Commission on Higher Education, 3624 Market St., Philadelphia, PA 19104-2680; 215-662-5606. The Accreditation Board for Engineering and Technology (ABET) is the accrediting authority for engineering and technology programs in the United States. Universities and colleges may choose to have their basic (undergraduate) or advanced (graduate) programs accredited, but not both. Nearly every engineering school, including the Whiting School, chooses to have its basic programs accredited by ABET.

Graduate Programs

<table>
<thead>
<tr>
<th>Graduate Programs</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied and Computational Mathematics</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Higher Education and Conference Center @ HEAT</td>
</tr>
<tr>
<td></td>
<td>• Southern Maryland Higher Education Center</td>
</tr>
<tr>
<td>Applied Biomedical Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Chemical and Biomolecular Engineering</td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td>Computer Science</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Environmental Engineering, Science, and Management</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Washington, D.C. Center</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Information Assurance</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td>Information Systems Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Homewood Campus</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Crystal City Center</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Higher Education and Conference Center @ HEAT</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
<tr>
<td></td>
<td>• Southern Maryland Higher Education Center</td>
</tr>
<tr>
<td></td>
<td>• Online</td>
</tr>
<tr>
<td>Technical Management</td>
<td>• APL</td>
</tr>
<tr>
<td></td>
<td>• Dorsey Center</td>
</tr>
<tr>
<td></td>
<td>• Montgomery County Campus</td>
</tr>
</tbody>
</table>

Education Centers

- Applied Physics Laboratory (APL), Laurel, MD
- Crystal City Center, Arlington, VA
- Dorsey Student Services Center, Elkridge, MD
- Higher Education and Conference Center @ HEAT, Aberdeen, MD
- Homewood Campus, Baltimore, MD
- Montgomery County Campus, Rockville, MD
- Southern Maryland Higher Education Center, California, MD
- Washington, D.C. Center, Washington, D.C.
- Online

See Directions and Maps on page 169.

NOTE: Graduate students may take courses at any Hopkins location listed in the table. Please note that not all courses are offered at all locations. Locations offering the full program are indicated in bold, with the remaining locations offering selected courses.
Degrees and Certificates

The Johns Hopkins University offers a variety of degrees and certificates to EP students. Requirements for each discipline are detailed in the individual program listings in this catalog.

Master of Science

Programs are offered in applied and computational mathematics; applied biomedical engineering; applied physics; computer science; electrical and computer engineering; environmental engineering, science, and management; information assurance; information systems engineering; systems engineering; and technical management.

A joint degree in bioinformatics is offered by Engineering for Professionals and the Krieger School of Arts and Sciences Advanced Academic Programs. The description of this degree can be found under Graduate Programs, Bioinformatics program.

Master of Engineering

Graduate degree programs are offered in chemical and biomolecular engineering, civil engineering, environmental engineering, materials science and engineering, and mechanical engineering.

Advanced Certificate for Post-Master’s Study

This certificate is awarded upon completion of six courses beyond the master’s degree in the same or a closely related discipline area.

Graduate Certificate

This certificate is awarded upon completion of a select number of courses of graduate study within one of the master’s degree discipline areas.

Non-Degree-Seeking Students

Students who wish to enroll in courses but are not interested in pursuing a degree or certificate may enroll as Special Students.

Admission Requirements

Johns Hopkins Engineering for Professionals encourages all students who have serious academic interests to apply. Qualified students may structure their course work to pursue a specific degree or certificate program, or they may take courses under the Special Student (i.e., non-degree-seeking) designation if they have met program and course prerequisites. An applicant may be admitted in one of four categories:

1. Master’s Degree candidate
2. Advanced Certificate for Post-Master’s Study candidate
3. Graduate Certificate candidate
4. Special Student

An applicant must meet the general admission requirements appropriate for all graduate study and the specific admission requirements for the desired program. Note that these requirements represent minimum standards for admission; the final decision on an applicant’s suitability for a given program is made by the admissions committee for that program. The general application procedures and admission requirements are stated below. Please refer to the individual program sections for additional specific requirements.

Applicants who have been dismissed or suspended by any college or university, including Johns Hopkins, within the past four years are not eligible for admission.

Master’s Degree Candidates

The program consists of 10 courses planned in consultation with an advisor. Note that the joint M.S. degree in Bioinformatics requires 11 courses. General admission requirements for master’s degree candidates and others seeking graduate status are as follows: Applicants must be in the last semester of undergraduate study or hold a bachelor’s degree from a regionally accredited college or university. Applicants must have earned grade point averages of at least 3.0 on a 4.0 scale (B or above) in the latter half of their studies or hold graduate degrees in technical disciplines.

Students must complete the master’s degree within five years from the start of the first course in the student’s program. Only one grade of C can count toward the master’s degree.

Advanced Certificate for Post-Master’s Study Candidates

To accommodate students who wish to pursue studies beyond the master’s degree, many of the disciplines in the programs offer a certificate of post-master’s study. This program is intended to add depth and/or breadth in the discipline of the student’s master’s degree, or a closely related one.

The program consists of six courses planned in consultation with an advisor. In some cases students may substitute independent projects for up to two of the courses.
Admission Requirements

The general admission requirement for the Advanced Certificate program is that candidates must have completed a master's degree in an engineering or science discipline. Academic credentials must be submitted for admission committee review. After acceptance, each student is assigned an advisor with whom he or she jointly designs a program tailored to individual educational objectives.

Students must complete the Advanced Certificate for Post-Master's Study within three years of the first enrollment in the program. Only grades of B or above can count toward the Advanced Certificate for Post-Master's Study.

Courses taken for the Advanced Certificate for Post-Master's Study may be counted toward a master's degree with advisor approval.

Graduate Certificate Candidates
The Graduate Certificate is offered in a select number of degree disciplines and is directed toward students who may not need a master's degree, may not have the opportunity to pursue the entire master's degree, or may wish to focus their studies on a set of courses in a specific subject area.

The certificate generally consists of five to six courses (program dependent). The program area of study specifies the selection and number of applicable courses. If, in the future, the student decides to pursue a full master's degree, all courses will apply provided they meet the program requirements and fall within the five-year limit.

Students must meet the general master's degree admission requirements, as well as the specific requirements of the desired program. Academic credentials must be submitted for admission committee review. After acceptance, each student is assigned an advisor with whom he or she jointly designs a program tailored to individual educational objectives.

Students must complete the Graduate Certificate within three years of first enrolling in the program. Only grades of B or above can count toward the Graduate Certificate.

Courses taken for the Graduate Certificate may be counted toward a master's degree with advisor approval.

Special Students
The general requirement for admission as a Special Student (i.e., non-degree-seeking) is that the applicant must hold a bachelor's degree from a regionally accredited college or university or be in the last semester of undergraduate study. Applicants must have earned a grade point average of at least 3.0 on a 4.0 (B or above) scale in the latter half of their studies or hold graduate degrees in relevant technical disciplines and meet admission prerequisites for the program in which they have applied to be a Special Student.

Visiting graduate students are Special Students who are enrolled in a graduate program at another university and are registering for EP courses.

All Special Students must satisfy program prerequisites as well as specific course prerequisites in order to enroll.

Courses taken while a Special Student do not necessarily count toward fulfillment of degree requirements if the student is subsequently accepted as a degree candidate. Determinations on course applicability toward a degree are made on an individual basis.

Application Procedures
To be considered for admission to a degree or certificate program or to take courses as Special Students, applicants must submit a formal application, a nonrefundable $75 application fee made payable to Johns Hopkins University, official transcripts of all college studies, and any other documents specified by particular programs. If a Special Student applicant later decides to apply for a degree, a letter of intent is required. The application fee is waived for alumni of the Whiting School of Engineering. Generally, EP recommends that students apply for admission in the semester prior to their planned enrollment.

The application is available online at ep.jhu.edu/apply. Complete instructions are available on the website.

An application for admission is not reviewed by an admissions committee until official transcripts from all colleges attended and required supporting documents are received. Please note that official transcripts must be received in the institution's sealed envelope, or sent electronically via the Scrip-Safe network. Failure to provide all official transcripts, supporting documents, and application fee will delay review of the application. Please allow four to six weeks for application processing once all materials have been received.

Readmission
An application is held on file for one year from the date of its receipt. Applicants who fail to submit required materials within this period must reapply and submit another application and fee.

Applicants must satisfy admission requirements in force at the time of reapplication. Admitted students may defer the start of their studies for up to one year following admission. After one year of inactivity, the student must reapply.

Applicants who have been dismissed or suspended by any college or university, including Johns Hopkins, within the past four years are not eligible for admission.

Admission to Other Divisions of the University
Any student who wishes to transfer to another school in the university or to a full-time engineering program must apply to the appropriate department or to the Office of Admissions. Admission to an EP program establishes no claim or priority for admission to other divisions of the university.

International Applicants
The United States Immigration and Naturalization Service regulations require students with F-1 visas to be enrolled full-time in a degree-seeking program.

As EP does not provide on-campus housing or financial support for graduate international students, applicants needing student F-1 visas must be able to present documented evidence of available financial support to cover annual living and educational expenses while studying at JHU. Applicants...
who are in the United States on student visas should consult with their current school’s international office for information on how to transfer to another approved school.

The EP office is not authorized to certify the I-20 form required for a student visa. Those holding student visas granted by other universities are not allowed to register for classes and cannot be accepted as degree candidates or Special Students. For visa information, contact The Johns Hopkins University, Office of International Student and Scholar Services, www.jhu.edu/isss.

International Credential Evaluation
Applicants who hold degrees or have earned credits from non-U.S. institutions must have their academic records evaluated by World Education Services, Inc. before they can be considered for graduate or Special Student status or admission to a degree/certificate program. In addition to submitting official records to EP, applicants must make arrangements with the credential evaluation agency for an evaluation of the degree, an assessment of the overall grade point average, and a course-by-course evaluation.

World Education Services, Inc.
P.O. Box 745
Old Chelsea Station
New York, NY 10113-0745
Telephone: 212-966-6311
Fax: 212-966-6395
E-mail: info@wes.org

English Proficiency
The Johns Hopkins University requires students to have English proficiency for their course of study. Effective April 1, 2010, all international applicants must submit proof of their proficiency in English via the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) before they can be offered admission.

A minimum score of 600 (paper-based), 250 (computer-based), or 100 (Internet-based) is required on the TOEFL; for the IELTS, an overall band score of at least 7.0 is required. The EP admissions office requires official copies of all results.

Requests to Change Program of Study
A student who wishes to change his/her status (e.g., from Special Student to master’s degree candidate) or field of study (e.g., from technical management to systems engineering, or from the general computer science program to the telecommunications and networking option) must submit a written request to the EP office. The student must meet all the admission requirements of the new program.

Registration
Before registering for any engineering classes, each student must apply as a degree or certificate candidate, or as a Special Student, and must submit appropriate application materials for review. Application procedures are found in the Admission Requirements section. Applications are accepted on a continuing basis.

Payment of tuition is due at the specified deadline listed in the academic calendar. Payment may be made by check, credit card, tuition remission, or company contract accompanied by purchase order. EP does not defer payment for companies providing tuition reimbursement at the end of the term. In this instance, students must pay tuition themselves and be reimbursed by their employer. If payment is not made by the deadline date, a late payment fee of $125 will be incurred.

If you have registered and have not paid your balance, an email statement will be sent to you on the 16th of each month with the balance due the university. This is not a bill. This is a reminder of the debt owed to the university and is a reflection of your account status at the time of the email. Changes in circumstances may have an effect on the amount that you are responsible to pay, for instance, adding or dropping courses, late registration, or late payment fees.

Students are not permitted to register if there are unpaid bills from a previous term.

Course Schedule
The EP course schedule, which lists the day, time, location, and instructor for each course, is available on the web at ep.jhu.edu/schedule prior to each registration period. All students who have been enrolled in courses during the previous year will receive notification of the web posting of the course schedule. All relevant registration forms and deadlines can be found on the EP website.

Course Numbering System
All Whiting School of Engineering courses are numbered in the form 605.402, where 605 indicates the program—in this example, Computer Science 402 indicates the course number—in this example, Software Analysis and Design

Courses with a zero before the first decimal point—e.g. 600.439—are daytime offerings of the Whiting School departments.

Courses numbered xxx.1xx, xxx.2xx, and xxx.3xx are undergraduate level and will not count for graduate credit.

Course Credit
Credit hours are not assigned for graduate level courses (400-level and above).

Web Registration
Advance registration takes place three times a year: prior to the fall semester, the spring semester, and the summer term.

All students are encouraged to use web registration at ep.jhu.edu/register. Students must establish a JHED account in order to use web registration; instructions are available on the opening page.
Registering for Online Courses
Initial contact and instructions for online courses will be delivered via email prior to the first day of classes each term. Therefore, it is the responsibility of students registering for online courses to supply a current and active email address and an alternate contact method, such as work and/or home phone numbers, on the registration form for each term.

Late Registration
Students may register after the beginning of a term if necessary. However, students enrolling in their first EP online course must be registered no later than a week and a half prior to the first day of classes in order to attend a mandatory online orientation prior to the start of the term. The deadline for adding online courses is a week after the first day of classes each term, which is earlier than the deadline for conventional classes. See the Registration Deadlines section on page 15 for a detailed description of the orientation and student participation requirements. Although there is no fee for late registration, students who delay registering until these times may find course selection severely restricted.

New Applicants
An applicant who has not received an admission decision prior to the start of the semester must attend an advising session. Dates of advising sessions are listed on the academic calendar. Advising sessions are scheduled just prior to the start of each semester to give applicants the opportunity to meet with an advisor to discuss the applicant’s qualifications for the program. Depending upon prior course work taken, the applicant may be approved to register for a class before a formal offer of admission is received. If the student is subsequently accepted to a degree or certificate program, the program committee will determine whether courses taken prior to admission may be counted in fulfillment of degree requirements. Please note that approval to take a course prior to receipt of an admission decision does not guarantee acceptance into the program. Although there is no fee for late registration, students who delay registering until these times may find course selection severely restricted.

Interdivisional Registration
With approval of their advisors, students may take courses in the full-time programs of the Whiting School or in other divisions of the university. Registration for these classes should be submitted on the EP registration form. Please note that tuition rates vary by division.

Students in other divisions of Johns Hopkins may register for EP courses, subject to the regulations of their home divisions and availability of space. The form requesting registration is available at ep.jhu.edu/student-forms.

Course Enrollment Limits
In order to foster high-quality faculty-student interaction, all courses have enrollment limits. Although every effort is made to offer additional sections of oversubscribed courses, this is not always possible.

Auditors
Students may register as auditors with the approval of the appropriate program advisor. Although regular attendance is expected of auditors, they are exempt from quizzes, examinations, and other assigned work, and they receive no credit for the course. Students who are enrolled for credit but wish to become auditors must submit the “add/drop” form before the deadline listed for each term in the Academic and Registration Calendar. There is no reduction in fees when auditing a course.

Adding and Dropping Courses
Deadlines for completing this procedure are given in the Academic and Registration Calendar. Notification to the instructor does not constitute dropping a course. Students who stop attending a course without completing and submitting the drop form will receive an F grade. The refund policy pertaining to dropped courses is described on the Tuition and Fees page.

Textbooks
For information regarding textbooks, visit ep.jhu.edu/textbooks.

Academic Regulations
Following are the general requirements governing study in the Engineering for Professionals program at Johns Hopkins. Students are expected to be familiar with these requirements and with the specific regulations set forth in the sections relevant to particular programs of study.

Requirements for degree programs and certificate programs described in this catalog may change from time to time. When this occurs, students may fulfill either the requirements in force at the time of admission or those in force at the time of graduation.

Advisors and Program Planning
Students are assigned an advisor when accepted. In addition, students in most master’s degree and certificate programs are required to submit a program planning form for their advisor’s approval. The program planning form provides students
an opportunity to structure their course work according to their educational objectives and to meet degree requirements. Submission of the form confirms the student's acceptance of admission and his or her intention to begin study. Courses that deviate from the program plan and have not been approved by an advisor may not count toward degree requirements. The program planning form may be accessed at ep.jhu.edu/student-forms.

Students in programs that do not require program planning forms are urged to consult their advisor prior to registration for courses.

If a newly admitted student fails to return the program planning form when requested, it is assumed that the student does not wish to enter the program at that time. If the form is returned but the student fails to enroll within one year, it is necessary to reapply.

Academic Standing
The university reserves the right to exclude at any time a student whose academic standing or general conduct is deemed unsatisfactory.

Master's Degree Candidates
Only one grade of C may be counted toward the master's degree.

Academic Probation—Any student receiving either one grade of F or two grades of C during their program of study will be placed on academic probation. Students placed on probation are permitted to retake any graduate course in which they have earned a grade of C or below. If a grade of B or above is earned in the repeated course, the probationary status will be removed. Please note that not all courses are offered every term. Students on probation who wish to retake a course will remain on probation until the course is offered again and completed with a grade of B or above. If an additional grade below B is received before the course is repeated and successfully completed, the student will be dismissed.

There are circumstances described below where students will not be placed on probation but will be immediately dismissed from the program.

Academic Dismissal—The following are causes for dismissal from the program:
- Students already on probation who receive an additional grade of C or below
- Students receiving a grade of C and a subsequent F
- Students receiving three grades of C
- Students receiving two grades of F
- Students receiving grades of F and C in the same term

Applicants who have been dismissed or suspended by any college or university, including Johns Hopkins, within the past four years are not eligible for admission.

Certificate or Advanced Certificate for Post-Master's Study
No grade of C can be counted toward a graduate certificate or advanced certificate for post-master's study. The above policy for probation and dismissal will apply.

Special Students
The above policy for probation and dismissal will apply.

Second Master's Degree
After receiving a master's degree from EP, students may continue their graduate education in a second field if the appropriate prerequisites of the new program are fulfilled.

To receive a second master's degree, all requirements for the second program must be satisfied. If the following conditions are met, up to two courses taken as part of the first degree may be applied toward requirements of the second:
- The course(s) must satisfy the requirements of the second degree.
- The student's advisor must approve the course(s) as appropriate to the plan of study.
- The course(s) must fall within the five-year limit for the second degree; i.e., completion of the second degree must fall within five years from the date of the first class counted toward that degree.

Time Limitation
To be counted toward the degree or certificate, all course work in the program must be completed within a specified period, which begins with the start of the first course in the student's program:
- Master's degree – 5 years
- Advanced Certificate – 3 years
- Graduate Certificate – 3 years

If necessary, a request for an extension, stating the extenuating circumstances, should be submitted in writing to the relevant program committee at least one semester before the student otherwise would be expected to graduate.

Leave of Absence
Students who do not plan to enroll in classes for a period of one year or more must notify the EP student services office in writing and request a leave of absence for a specified period of time. The appropriate program chair will make the decision to approve or not approve the request. Students who are granted a leave of absence must resume their studies at the end of the allotted leave time. If warranted, the time permitted to complete degree requirements will be extended by the length of time granted for the leave of absence.

Students who do not resume their studies after a leave of absence has expired, or who have not enrolled for more than one year without having requested a leave of absence, will assume the status of a student who has withdrawn from the program. Such students must reapply, pay the $75 application fee, and are subject to the admission requirements in force at the date
Academic Regulations

of the new application. Acceptance is not guaranteed even for students previously admitted. Courses taken prior to the interruption of studies will not count toward requirements if they are not completed within the time allowed for degree completion.

Transfer Courses
Requests to transfer courses from another institution toward the master’s degree will be considered on an individual basis. A maximum of two courses may be accepted for transfer to a master’s degree or one course to a graduate or advanced certificate with prior approval of the appropriate program chair. No request will be considered for courses taken more than five years prior to the start of the program. Courses must be graduate level, not previously applied toward an awarded degree, and directly applicable to the student’s program of study at EP. Requests should be submitted in writing to the admissions office at the Dorsey Student Services Center. Please include a course description. An official transcript showing the course to be transferred is required. To be official, the transcript must be received by the admissions office at the Dorsey Student Services Center in an institution’s sealed envelope. Requests to transfer courses cannot be processed if the transcript is not official. The fee for transfer is $290 per course.

After being accepted into an EP program of study, students may not take classes at another institution for transfer back to their EP program.

Graduation
Students who expect to receive a degree or certificate must submit an application for graduation. The graduation application should be submitted prior to the final term in which degree requirements will be completed. Instructions for completing the graduation application can be found at ep.jhu.edu/graduation-application.

Students who are planning to graduate should complete all course work on time and should not request to receive the grade of I (Incomplete) during their final semester.

Approximately two months after the semester begins, students who have submitted the application for graduation receive a preliminary letter stating their names have been placed on the tentative graduation list for the semester in which they anticipate completing their degree requirements.

The WSE Graduate Committee meets three times each year to review candidates for graduation and to make recommendations to the university president for commencement. Students completing all requirements at the end of the summer term are reviewed by the committee in late October; those finishing at the end of the fall semester are reviewed in late February; and those finishing at the end of the spring semester are reviewed in May. After the WSE Graduate Committee meets, students on the graduation list receive a letter confirming the committee’s action. Degrees are conferred three times a year, after spring, summer, and fall semesters. Commencement information is sent the first week in March. To receive their diploma, students must pay all student accounts in full and resolve all outstanding charges of misconduct and violations of academic integrity. Students will receive an e-bill notification in the spring from Student Accounts. The e-bill will be sent to the student’s preferred email account. For graduation fees, see the Tuition and Fees section.

Johns Hopkins diplomas indicate the school, degree, and major (e.g., Master of Science–Computer Science) without identifying the student’s concentration or option.

Grading System
The following grades are used for courses: A (excellent), B (good), C (unsatisfactory), F (failure), I (incomplete), W (official withdrawal), and AU (audit). The last two are not assigned by an instructor.

A grade of F indicates the student’s failure to complete or comprehend the course work. A course for which an unsatisfactory grade (C or F) has been received may be retaken. The original grade is replaced with an R (retake). If the failed course includes a laboratory, both the lecture and laboratory work must be retaken unless the instructor indicates otherwise. A grade of W is issued to those who have dropped the course after the refund period (the sixth class meeting for on-site courses) but before the drop deadline.

The transcript is part of the student’s permanent record at the university. No grade may be changed except to correct an error, replace an incomplete with a grade, or replace a grade with an R.

The Whiting School assumes that students possess acceptable written command of the English language. It is proper for faculty to consider writing quality when assigning grades.

Incompletes
A grade of Incomplete (I) is assigned when a student fails to complete a course on time for valid reasons, usually under circumstances beyond his/her control. A $60 change of grade fee must be mailed to the EP Dorsey Student Services Center office before the final grade will be posted on the student’s transcript (except for grades of F).

Conditions for resolving an incomplete are established by the instructor. A final grade must be submitted to the Registrar within four weeks after the start of the following term. A grade of F will be assigned if the incomplete work is not submitted by the deadline. For academic year 2010-2011, the dates by which final grades for incomplete work must be resolved are:

<table>
<thead>
<tr>
<th>Term</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer term</td>
<td>October 1</td>
</tr>
<tr>
<td>Fall semester</td>
<td>February 25</td>
</tr>
<tr>
<td>Spring semester</td>
<td>July 1</td>
</tr>
</tbody>
</table>

Students who expect to complete degree requirements but have an incomplete are not certified for graduation until the end of the following term.

Grade Reports
At the midpoint of each term, instructors are requested to provide a list of students whose work at that time is unsatisfactory. Students are notified by the EP Student Services staff
if their names are reported so they can take corrective action. These early reports are for the benefit of students and their advisors and are not part of the permanent record.

Grades are available online at https://isis.jhu.edu/sswf. These reports CANNOT be requested by telephone or personal inquiry. Students with questions regarding their grade reports or who want their transcripts sent to other institutions should make arrangements with the Office of the Registrar, 410-516-7088 or jhu.edu/registrar.

Grade Appeals

Student concerns regarding grades must first be discussed thoroughly with the instructor. If the student and the instructor are unable to reach agreement, the student may appeal in writing the instructor’s decision to the appropriate program chair, and, finally, to the associate dean. At each review level, evaluation criteria will be limited to: (1) verification that there was not an error in recording the grade and (2) verification that the grade was determined on the basis of considered academic judgment. Grade appeals must be initiated within one semester after completing the course in question.

Student Attendance

Students are expected to regularly attend all courses in which they are enrolled. Although EP and the university have no specific rules governing absences, the course instructor may announce certain attendance requirements. It is the student’s responsibility to be aware of those requirements. Students who know they will be absent from class, especially for an extended period of time, should notify the instructor as far in advance as possible. It is the student’s responsibility to discuss missed assignments and exams with the instructor. If an instructor is unavoidably late for class, the site office will attempt to notify students and tell them to wait, if it is practical. If an instructor is unable to meet a class, every attempt will be made by EP staff to inform students of the cancellation, a makeup time for the class (if available), and information regarding assignments. If an instructor informs the EP office of a class cancellation with enough lead time, phone calls will be made to students.

Academic Misconduct

This section summarizes the policy on academic misconduct described at www.engineering.jhu.edu/include/content/pdf-word/misconduct-policy.pdf.

The Roles of Students and Faculty

Johns Hopkins faculty and students have a joint responsibility to maintain the academic integrity of the university in all respects. Students must conduct themselves in a manner appropriate to the university’s mission as an institution of higher education. Students are obligated to refrain from acts that they know, or under the circumstances have reason to know, impair the academic integrity of the university. Violations of academic integrity include, but are not limited to, cheating, plagiarism, unapproved multiple submissions, knowingly furnishing false information to any agent of the University for inclusion in academic records, and falsification, forgery, alteration, destruction, or misuse of official university documents. Members of the faculty are responsible for announcing the academic requirements of each course, for the conduct of examinations, and for the security of examination papers and teaching laboratories. It is the duty of faculty to report suspected violations of academic integrity to the appropriate program chair. It is the responsibility of each student to report to the instructor any suspected violations of academic integrity.

Violations of Academic Integrity

After reviewing the circumstances of any suspected violation of academic integrity to determine if a violation may have occurred, a program chair will promptly report (in writing) the suspected violation to the associate dean. Supporting evidence (e.g., copies of examination papers) should accompany the report. The associate dean will resolve the issues following the procedures set forth on the website noted above.

Copyright Violations

Copying, downloading, or distributing music, videos, software, games, or other copyrighted materials without permission of the owner violates both federal law and university policy, and will be submitted for disciplinary action.

Original works fixed in any tangible medium of expression, which includes storage within computers, are copyrighted to the author from the moment of creation. No notice of copyright is required. Except under limited circumstances for limited purposes, you may not make or distribute copies of material belonging to others without their permission. Unless a site specifically grants you permission to download and copy material from the site, you should assume that you cannot do so. You should also assume that all person-to-person sharing of music, programs, videos, and software is a violation of copyright. Copyright violations will be submitted for disciplinary action.

Computer Usage

Because JHU’s Office of Information Technology updates its policies frequently, please visit the JHU IT website at it.jhu.edu for the latest information on usage, security, and the “Jumpstart” guide for student policies. The following includes key elements of the policy, which is posted in all EP computer labs:

Acceptable use of IT resources is use that is consistent with Johns Hopkins’ missions of education, research, service, and patient care, and is legal, ethical, and honest; it must respect intellectual property, ownership of data, system security mechanisms, and individuals’ rights to privacy and freedom from intimidation, harassment, and annoyance; it must show consideration in the consumption and utilization of IT resources; and it must not jeopardize Johns Hopkins’ not-for-profit status. Incidental personal use of IT resources is permitted if consistent with applicable JHU and divisional policy, and if such use is reasonable, not excessive, and does not impair work performance or productivity.
Please visit the JHU IT link above for additional information on unacceptable use of IT resources.

Tuition and Fees

Students whose tuition is paid by contract should begin processing requests with their employers well before registration deadlines to ensure that payment is made as required. Students are ultimately responsible for all costs associated with their registration.

Tuition
The EP graduate tuition fee is $2,885 per course, unless otherwise noted. The tuition for 200-level courses is $1,585. Tuition for courses in the daytime programs of the Whiting School is a percentage of full-time tuition. If students need a receipt for the classes they are attending, they may contact Student Accounts at 410-516-8158.

Application Fee
The application fee for degree and certificate programs and Special Students is $75. This fee must be submitted with the application and is not refundable under any circumstances. Whiting School of Engineering degree and certificate recipients who wish to enter into another degree or certificate program may apply without paying an application fee.

Graduation Fee
The graduation fee is $100 and is payable upon receipt of an e-bill notification from the office of Student Accounts. The e-bill notification will be sent to your preferred email account.

Late Tuition Payment Fee
Tuition payment due dates are indicated on the academic calendar. If payment is received after the due date, a late payment fee of $125 will be incurred.

Transfer Credit Fee
Graduate courses completed at another school and approved for transfer are assessed a fee of $290 per course.

Fee for Removal of an Incomplete Grade
Students who receive an incomplete grade for a course are required to pay a $60 fee to have the I grade changed to the final grade. This fee must be paid to the EP office, Dorsey Student Services Center, before the grade change can be released by the Registrar. No payment is required if the final grade is an F.

Refund Policy
Refunds apply only to the tuition portion of a student’s charges and are calculated from the date of drop submission. Telephone drops or withdrawals are not accepted. Refunds are not applicable to any fees. Refunds are not granted to students suspended or dismissed for disciplinary reasons. Tuition refunds are made in accordance with the following schedule.

Refund Schedule

<table>
<thead>
<tr>
<th>Drop Date</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to third class meeting</td>
<td>100%</td>
</tr>
<tr>
<td>Prior to fourth class meeting</td>
<td>75%</td>
</tr>
<tr>
<td>Prior to fifth class meeting</td>
<td>50%</td>
</tr>
<tr>
<td>Prior to sixth class meeting</td>
<td>25%</td>
</tr>
</tbody>
</table>

For Online Courses

<table>
<thead>
<tr>
<th>Drop Date</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to third week of class</td>
<td>100%</td>
</tr>
<tr>
<td>Prior to fourth week of class</td>
<td>75%</td>
</tr>
<tr>
<td>Prior to fifth week of class</td>
<td>50%</td>
</tr>
<tr>
<td>Prior to sixth week of class</td>
<td>25%</td>
</tr>
</tbody>
</table>

Students who are enrolled at The Johns Hopkins University for the first time and who are receiving federal student financial aid are subject to a separate refund policy during their first period of enrollment. Refer to Title IV Refund Policy on page 153 for further information.

Financial Aid

Federal financial aid in the form of student loans is available to part-time graduate degree candidates who are enrolled in two or more courses per term. Students must complete the Free Application for Federal Student Aid (FAFSA). This form is available online at www.fafsa.ed.gov. For more information about applying for financial aid, please review the Office of Student Financial Services website at www.jhu.edu/finaid or contact the Office of Student Financial Services, 146 Garland Hall, 410-516-8028 or email to fini_aid@jhu.edu.

Definition of Full-Time, Half-Time, and Part-Time Enrollment

Students who take three or more EP courses each term are considered to be enrolled on a full-time basis, students who take two courses are considered to be enrolled on a half-time basis, and students who take one course are considered to be enrolled on a part-time basis.

Veterans Benefits

Johns Hopkins is approved by the Maryland Higher Education Commission for the training of veterans and the widows and children of deceased veterans under provisions of the various federal laws pertaining to veterans’ educational benefits. Information about veterans’ benefits and enrollment procedures may be obtained at the Registrar’s Office, Garland Hall, 410-516-7071. Students eligible for veterans educational benefits register and pay their university bills in the same manner as other students. Reimbursement is made by the U.S. Department of Veterans Affairs on a monthly basis.
The amount of reimbursement is determined by the veteran’s number of dependents and course load. Note that credits are not assigned to EP graduate courses. A statement of “equivalent” credits for each graduate course taken may be obtained from the Registrar's Office. To obtain reimbursement, a veteran must comply with the following procedures:

Initial Enrollment—The veteran must first apply and be admitted to one of the schools of the university. He or she then obtains an Application for Program of Education or Training (DVA Form 22-1990) from the U.S. Department of Veterans Affairs at www.gibill.va.gov.

After completing the application, the veteran sends it, with a certified copy of appropriate discharge papers, to the following address:

Veterans Affairs
Office of the Registrar
Johns Hopkins University
75 Garland Hall
3400 N. Charles Street
Baltimore, Maryland 21218-2681

Transfers—When transferring from another college or university, the veteran must obtain a Request for Change of Program or Place of Training Form (DVA Form 22-1995) from the U.S. Department of Veterans Affairs at www.gibill.va.gov, and must submit the completed form to the Registrar’s Office in Garland Hall at the university.

Re-enrollment—A student who received veterans benefits while attending the university during the preceding semester or summer session, and who plans to re-enroll with no change of objective, must advise the Registrar when submitting registration materials that he or she wishes to be recertified under the provisions of the original DVA Form 22-1990.

Students receiving veterans benefits must pursue a program of courses which leads toward the exact objective (normally a degree or certificate) indicated on the original DVA application. Any change in program or objective requires submission of a Request for Change of Program (DVA Form 22-1995). Veteran students are required to advise the Registrar immediately of any change in their program or status (add/drops) which might affect the amount of their monthly payment from the DVA. Failure to do so will cause the Department of Veterans Affairs to seek restitution from the veteran for the overpayment of benefits.

Standards of Progress—Continuation of DVA payments is dependent upon the veteran’s meeting the academic standards established by the university for all students—veterans and non-veterans alike. The veteran must also meet any standards of progress that are or may be established by DVA regulations. If the student fails to meet these standards, benefits will be suspended until the DVA completes a review of the student’s progress and determines that the benefits may be resumed.

Yellow Ribbon Tuition Assistance Program—EP participates in the Yellow Ribbon program provided by the U.S. Department of Veterans Affairs to eligible veterans. General information about the program and eligibility requirements is available at gibill.va.gov/school_info/yellow_ribbon. For more specific information on applying for the Yellow Ribbon program at EP, please contact the Registrar’s Office at jhu.edu/registr/veterans.html or 410-516-7071.

Facilities and Student Services

Engineering for Professionals courses are offered at the Homewood campus in Baltimore, the Applied Physics Laboratory (APL) in Laurel, the Montgomery County Campus in Rockville, the Dorsey Student Services Center near Baltimore/Washington International Thurgood Marshall Airport, the Southern Maryland Higher Education Center in St. Mary’s County, the Washington Center in Washington, D.C., the Higher Education and Conference Center @ HEAT in Harford County, the Crystal City Center in Arlington, Virginia, and fully online. The educational and student facilities and services provided at each location are described on the following pages.

Student ID JCards

University identification cards are mailed to the home address of every registered student. The JCard acts as the university library card, which enables students to check out books from the Homewood Eisenhower Library or at any of the campus center libraries, and provides access to many computer laboratories. To replace a lost or stolen JCard, contact the JCard Office at 410-516-5121.

Transcripts

Official transcripts will be mailed upon written request of the student at no charge. Requests for transcripts should be directed to the Office of the Registrar, 410-516-7088. Transcripts may also be ordered online from studentclearinghouse.org for a fee. For more information about each of these options, see jhu.edu/~registr/transcript.html.

International Student Services

For a description of all the services available at Johns Hopkins for international students, contact the Office of International Student and Scholar Services at 410-516-1013 or jhu.edu/isss. For more information related to EP admission, please refer to the Admission Requirements section of this catalog.

Services for Students with Disabilities

Johns Hopkins University is committed to making all academic programs, support services, and facilities accessible to qualified individuals. Students with disabilities who require reasonable accommodations should contact the EP disability services coordinator at 410-516-2270 or at jhep@jhu.edu.
In order to receive accommodations, it is important to provide to the university a comprehensive evaluation of a specific disability from a qualified diagnostician that identifies the type of disability, describes the current level of functioning in an academic setting, and lists recommended accommodations. All documentation will be reviewed and reasonable accommodations will be provided based on the student’s needs. Students are required to contact the Engineering for Professionals office at least six weeks prior to the beginning of each semester to ensure that services will be available.

For questions or concerns regarding university-wide disability issues, contact Peggy Hayeslip, director, ADA Compliance and Disability Services, 410-516-8949 or phayeslip@jhu.edu.

JH Student Assistance Program

The JH Student Assistance Program (JHSAP) is a professional counseling service that can assist students with managing problems of daily living. Stress, personal problems, family conflict, and life challenges can affect the academic progress of students. JHSAP focuses on problem-solving through short-term counseling. Accessing the service is a simple matter of a phone call to arrange an appointment with a counselor. Office locations are conveniently located in the Washington/ Baltimore corridor to meet the needs of our students. Online students may call the number below for consultation and will be directed to the appropriate resource or office. To contact JHSAP, call 443-997-7000 or toll-free 866-764-2317. Additional information regarding the JHSAP services can be obtained at www.jhsap.org. JHSAP services are completely confidential. The program operates under state and federal confidentiality legislation and is HIPAA compliant.

Inclement Weather

The JHU Weather Emergency Line can be reached at 410-516-7781 or 800-548-9004. The JHU Weather Emergency Line provides information on campus closings due to inclement weather. The university may also use the same phone lines occasionally to distribute other urgent information. Announcements and closings will also be posted on the website: webapps.jhu.edu/emergencynotices.

Web-based Student Directory

JHED (Johns Hopkins Enterprise Directory) is the primary source for contact information of Johns Hopkins students. Your JHED login ID will be used for many web-based services, such as online registration, remote library access, and some course websites. You may find your login ID and initiate your account by going to jhed.jhu.edu from a computer at any of the campuses or by calling 410-516-HELP. Once you have set a password, you may use JHED from anywhere by logging in. If you have any questions, contact Hopkins Information Technology Services at 410-516-HELP.

Computers

IT@Johns Hopkins (IT@JH) provides a number of resources that are useful to students. Brief descriptions are provided below. For more information, go to jumpstart.jhu.edu.

JHEM—(Johns Hopkins Enterprise Messaging) is the official e-mail system recognized and used by the university to send campus news and announcements. All students are provided with a JHEM account and are required to set up their mailbox. If you have another e-mail account and prefer to use it, you can forward JHEM mail to that account. All e-mail sent to and from the university e-mail systems is scanned for viruses. You may access your JHEM e-mail account via a web interface at myep.jhu.edu or by using pop or imap protocols through an email client such as Netscape Messenger, Outlook Express, or Eudora. Instructions are available online at it.jhu.edu/email/jhem.

JShare—JShare is a web-based utility intended to provide students with a personal, easy-to-use interface to upload, download, and share files with users both inside and outside the institutions.

Some features of JShare include:

- 500 megabytes of file storage space for students and staff
- Secure file access from anywhere at any time
- Advanced collaboration and document management
- File-sharing ability both inside and outside the institutions
- Ability to email files as links to reduce the load on email systems
- Ability to create and maintain personal websites

Visit it.jhu.edu/jshare for more information.

JHConnect—JHConnect is a flexible IPSec-based remote access VPN solution, which allows members of the Hopkins communities to access computer resources located at Hopkins from remote locations. More information and download instructions can be accessed through the myJHed tab on the Johns Hopkins portal (myep.jhu.edu). Note: You must have an active JHED login to access this site.

Anti-Virus Policy—All devices vulnerable to electronic viruses must be appropriately safeguarded against infection and retransmission. It is the responsibility of every user to ensure that anti-virus protection is current and effectively implemented. Infected devices may be blocked and/ or removed from the JH Network by IT@JH or appropriate departmental personnel.

On behalf of the Johns Hopkins Institutions, IT@JH has licensed Symantec AntiVirus, available for Windows and Mac OS X operating systems.

Johns Hopkins students may use this website (it.jhu.edu/antivirus) to download and use Symantec AntiVirus on computers owned by the university or health system, or on personally owned computers, as long as they remain part of the Johns
the escort van.

cers of an emergency, to request information, or to summon
in several campus buildings, can be used to alert security offi-

cers. These telephones open a direct line to the security office as soon as the receiver is lifted or the button pushed. To ward off a possible attacker, an alarm sounds at the phone. Pay telephones also are available in most campus buildings. Security officers also patrol parking lots from 3 to 11 p.m., Monday through Friday. Student monitors, wearing bright orange vests and carrying radios, patrol the upper and lower quads during fall and spring semesters.

To reach the security office, call 410-516-4600. In case of an emergency, call 410-516-7777.

• Parking
Parking arrangements are made in the South Garage, under the Decker Quadrangle. Parking office hours are Monday through Friday, 7:30 a.m. to 10 p.m., and Saturday through Sunday, 10 a.m. to 6:30 p.m. 410-516-7275.

Applied Physics Laboratory Education Center
The Applied Physics Laboratory (APL), a division of the Johns Hopkins University, is primarily a research and development organization. As such, a major part of its mission is the application of advanced science and technology in solving problems of national and global significance. Its mission also includes support of the educational programs of the university, and APL maintains strong academic relationships with the other university divisions.

One of APL's most significant educational contributions is its close collaboration with the Johns Hopkins Engineering for Professionals program. Chairs for nine of EP's 50 programs hold staff positions at APL, along with nearly half of EP's instructors. APL provides classrooms, conference space, computer labs, and Unix servers for administrative and academic support of EP in the Kossiakoff Center, as well as classrooms in the R. E. Gibson Library.

The Education Center office, additional classrooms, a photonics laboratory, vending machines, and study areas are located in the library building.

• Computers
Computer facilities at the Kossiakoff Center include Multi-User Unix systems (two Sun servers) and a Sunray appliance-based X-terminals lab that provides a windowing environment via the default CDE window manager or the gnome window manager. These terminals are connected to the Unix servers as well as to the Internet via a high-speed LAN or WAN. Personal computer labs provide support for general purpose computing and applications development, embedded/interface design (with scopes and embedded processor development systems), computer/network security, and robot development (with development systems for autonomous robots). Remote access to the servers at APL is also available.

• Parking
Parking tags are not required. The lower level parking lot near the Kossiakoff Center is recommended.
Montgomery County Campus

The mission of the Montgomery County Campus in the Shady Grove Life Sciences Center in Rockville is to create a community of education, business, and government organizations where collaborative thinking and scientific discovery advance academic and economic development. The campus, which houses 46 smart classrooms and five computer labs, a full-service library, café, and extensive conference space, welcomes 4,000 students per year. Four of the university’s nine schools offer more than 60 degree and certificate programs at this location. In recent years, three technology research centers have co-located with Johns Hopkins University on this campus.

- **Library**

 The Montgomery County Campus Library maintains a reference and circulating collection of materials for use by faculty and students. Subject areas in the collection include computer science, electrical engineering, environmental engineering and science, management, and physics. Interlibrary loan service is provided to assist in obtaining journals and books not available at the MCC Library. An online catalog of the collection and a variety of full-text INSPEC and IEEE databases, including Compendex, are accessible through personal computer workstations in the library.

 To use materials, present your JCard at the circulation desk. The library is open from noon to 9 p.m., Monday through Thursday; noon to 6 p.m., Friday; and 10 a.m. to 5 p.m., Saturday.

- **Computers**

 Computer facilities at the Montgomery County Campus include Sun Ray thin clients, Unix servers and workstations, as well as personal computers available for student use. In addition, students have access via high-speed data links to Unix servers at Homewood and APL. Dial-in PPP access to the servers is also available. A fully functional networking lab with seven routers and three switches that are accessible locally and via a console server over the Internet is also located at the Montgomery County Campus.

- **Café**

 Located in the Academic and Research building, the café serves snacks and sandwiches during the daytime and early evening hours.

- **Parking**

 Free parking permits are issued upon completion of the application form. Parking permits may be obtained at the Gilchrist Hall front desk during the first two weeks of classes. There is no charge for this service.

Dorsey Student Services Center

In addition to classrooms and computer labs, the Dorsey Center houses the admissions and registration staff and serves as a central point of access for academic advising and financial services. The Dorsey Center is located near the Baltimore/Washington International Thurgood Marshall Airport at 6810 Deerpath Road, Suite 100, Elkridge, MD.

The center has an instructional laboratory equipped with Sun thin client workstations, personal computers, and high-speed internet access. Access to the Unix servers at APL is provided via dedicated high-speed lines. The center is also the site of the school’s Microwave Engineering Laboratory. This is a state-of-the-art facility for designing, developing, and testing microwave chips and circuits. This laboratory houses a full variety of microwave test and measurement equipment including:

- Network analyzers
- Spectrum analyzers
- Noise measuring equipment
- Sweep generators
- Synthesizers
- Fabrication and assembly equipment

In support of the microwave chip and circuit design process, our CAD laboratory has 13 workstations (12 student and 1 instructor) offering the latest versions of following software:

- Pro/ENGINEER, Pro/ENGINEER Mechanica and Pro/ENGINEER Sheet Metal for mechanical engineering and analysis
- Agilent ADS, Sonnet, MATLAB and gEE-CAD for microwave chip and circuit design and analysis
- Or CAD Capture and Layout for PCB design

These two laboratories offer our students the latest in hardware and software technology available in industry today.

Southern Maryland Higher Education Center

This facility was created by the Maryland General Assembly to serve as the regional upper-level undergraduate and graduate education and research institution for Southern Maryland. Currently, nine colleges and universities are participating, offering more than 90 graduate and 13 undergraduate degree programs. Facilities include two buildings with classrooms, a large multipurpose room, computer labs, a learning conference room, a student lounge, a vending area, and interactive videoconferencing capability. The full EP systems engineering and technical management programs are offered here, along with selected courses in applied and computational mathematics.

Washington D.C. Center

The Washington Center is conveniently located near the Dupont Circle Metro stop. Selected courses in the environmental engineering, science, and management program are currently being offered on site.

Crystal City Center

The Crystal City Center is EP’s first Northern Virginia facility, located just south of the Pentagon and accessible via Metro’s blue and yellow lines. Selected courses in systems engineering are currently offered on site. The Johns Hopkins University Whiting School of Engineering is certified to operate in the Commonwealth of Virginia by the State Council of Higher Education for Virginia.
Higher Education and Conference Center@HEAT

The HEAT Center is located in Harford County. Selected courses in environmental engineering, science, and management; systems engineering; and applied and computational mathematics are currently being offered.

Online Courses

EP offers more than 60 courses online. Available courses are listed under each program in the course schedule for each term. The courses that are available online increase each term, so students are encouraged to check each term for new offerings.

EP also offers four fully online degrees. The Master of Science in Bioinformatics degree is offered jointly with the Krieger School of Arts and Sciences Advanced Academic Programs (AAP). All courses may be taken online, and there is no residency requirement. The Master of Science in Environmental Planning and Management, the Master of Science in Computer Science, and the Master of Science in Systems Engineering are also offered fully online.

EP develops online courses in one of two ways. One method seeks to replicate the traditional classroom experience and relies heavily on streamed video of recorded lectures of face-to-face classes for content delivery. Homework and assessment are very similar to what would be delivered in a face-to-face class. These courses are referred to as distance education courses.

The other method seeks to replicate the student learning outcomes from our face-to-face programs, using best practices in online education. The courses are student centered and designed to promote active and collaborative learning. This method fosters an interactive style of problem solving that improves student comprehension. Content is delivered by many methods and assessments and may be slightly different from that used in the parallel face-to-face class, but the student learning outcomes are the same. These courses are referred to as online courses.

Both distance and online courses follow the normal academic schedule for each term, unless noted in the schedule. They are not self-paced. All registered students proceed through the course as a group, communicating online with their instructor and each other and, where appropriate, working in groups on team projects. The workload in distance and online courses is comparable to that in courses meeting face-to-face, but is often distributed more evenly throughout the week than is typical for courses taught in the classroom.

The courses are taught completely over the Internet and primarily through a course website. Students must have a working email address and reliable and easily accessible Internet access in order to complete course work successfully. There may be additional technical requirements for some courses, such as specific software, access to a fax machine, or specific players or plugins. Further information about the requirements for a specific course can be obtained by emailing epponline@jhu.edu or calling 410-516-8758.

- Registration Deadlines

Students enrolling in their first EP online course must attend the mandatory online orientation during that week. Returning online students are strongly encouraged to register early. Registration later than a week before the first day of the term may result in delayed access to the course website. Note that these deadlines may preclude registration at some of the new student advisory sessions. The deadline for adding online courses is a week after the first day of classes each term, which is earlier than the deadline for conventional courses. See the Academic and Registration Calendar for exact dates for each term.

- Online Orientation

Students enrolling in their first EP online course must attend a mandatory online orientation. See the Academic and Registration Calendar for the exact dates each term. Students may complete the orientation online during the week prior to the start of the term. Students will be given access to the orientation via email. The time commitment overall is minor, but early participation is recommended. The orientation will identify and address technical access issues, introduce the student to the interface and online tools used to deliver the course, and prepare the student to be a successful online learner. Students are only required to take this orientation the first time they enroll in an online course offered by EP.

- Textbooks for Online Courses

Students will receive a list of required and recommended textbooks via e-mail prior to the first day of classes each term. Textbooks and other course-related materials may be purchased online. Visit ep.jhu.edu/textbooks to obtain textbook information.

Inter-site Links

To increase the variety of courses at the centers, select courses are offered using video-teleconferencing equipment. This technology allows for two-way audio and video connectivity, creating real-time interaction between the sending and receiving sites. The system provides links between APL, the Dorsey Center, the Southern Maryland Higher Education Center, and the Montgomery County Campus, and permits students at any of the sites to enroll at courses originating at the other.

To further facilitate communication, high-speed data links connect Homewood, APL, the Montgomery County Campus, and the Dorsey Center, enabling students to access systems internally and via the Internet.
Applied and Computational Mathematics

Applied and computational mathematics is concerned with the use of mathematics to solve problems in diverse areas such as engineering, business, science, health care, information technology, and public policy. There is a strong connection between applied mathematics and modern computational methods, especially in the design and computer implementation of mathematical algorithms.

The Applied and Computational Mathematics (ACM) program prepares students for work in their areas of interest through instruction in mathematical and computational techniques of fundamental importance and practical relevance. The program allows students to choose an area of concentration such as probability and statistics, applied analysis, operations research, information technology and computation, or simulation and modeling. Students are also free to select courses from different areas to meet their individual needs. All students in the program will take a blend of introductory and advanced courses. Modern computing facilities are available for student use at the Kossiakoff Center of the Applied Physics Laboratory and all other EP campuses.

Program Committee

James C. Spall, Program Chair
Principal Professional Staff
Applied Physics Laboratory

Beryl Castello
Lecturer, Applied Mathematics and Statistics
Whiting School of Engineering

Stacy D. Hill
Senior Professional Staff
Applied Physics Laboratory

George Nakos
Professor, Mathematics
U.S. Naval Academy

Edward R. Scheinerman
Professor, Applied Mathematics and Statistics
Vice Dean for Education
Whiting School of Engineering

J. Miller Whisnant
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

M.S. Degree or Special Student. Applicants must meet the general requirements for admission to graduate study, outlined in this catalog in the Admission Requirements section. The applicant’s prior education must include at least one mathematics course beyond multivariate calculus (such as advanced calculus, differential equations, or linear algebra). All applicants must be familiar with at least one programming language (e.g., C, C++, FORTRAN, or MATLAB).

Advanced Certificate for Post-Master’s Study. Applicants must meet the criteria above and hold at least a master’s degree in applied and computational mathematics or a closely related area. It is expected that an applicant will have completed courses equivalent to 625.403 (Statistical Methods and Data Analysis) and at least one of 625.401 (Real Analysis) or 625.409 (Matrix Theory) in prior graduate course work.

Course Requirements

M.S. Degree. Ten one-term courses must be completed within five years. The 10 courses must include 625.403 (Statistical Methods and Data Analysis); at least one of 625.401 (Real Analysis) or 625.409 (Matrix Theory); and at least one of the two-term sequences 625.717-718 (Advanced Differential Equations: Partial and Nonlinear Differential Equations), 625.721-722 (Probability and Stochastic Processes I and II) or 625.725-726 (Theory of Statistics I, II). The remaining six courses must include at least four from the ACM program (courses numbered 625. XXX), with at least two of the four courses at the 700-level. Students are required to take at least one 700-level course outside of the sequences 625.717-718, 625.721-722, and 625.725-726. A student who has taken at least one year of undergraduate statistics or one semester of graduate statistics (outside of ACM) may substitute another 625.XXX course for 625.403 with approval of the student’s advisor. Two one-term elective courses are also to be taken. These may be from the ACM program or from another graduate program described in the catalog, subject to the approval of the student’s advisor. If chosen from another program, the courses are required to have significant mathematical content. A thesis or knowledge of a foreign language is not required.

Advanced Certificate for Post-Master’s Study. Six one-term courses must be completed within three years. At least four of the six courses must be ACM courses numbered 625.480 or higher, with at least three of these courses being at the 700-level. Courses 625.401 (Real Analysis), 625.403 (Statistical Methods and Data Analysis), and 625.409 (Matrix Theory) may not be counted toward the post-master’s certificate. At least one of the 700-level courses must be outside of the sequences 625.717-718, 625.721-722, and 625.725-726. Students are allowed to take one mathematically oriented elective course from outside the ACM program as part of the six courses for the certificate, subject to advisor approval.

A student with a long-run interest in pursuing a Ph.D. through the Applied Mathematics and Statistics (AMS) Department at the Homewood campus should coordinate his/her course plan with an ACM advisor and with a representative in the AMS Department. Certain courses within ACM may be especially helpful in passing the required entrance examination for the Ph.D. program. No priority of admission for the Ph.D. degree program is given to graduates of the ACM program.
Listed below are five concentration areas within Applied and Computational Mathematics. Students are free to focus their course selections in one of these areas. There is no requirement that a concentration area be chosen.

I. Probability and Statistics

- 625.403 Statistical Methods and Data Analysis
- 625.417 Applied Combinatorics and Discrete Mathematics
- 625.420 Mathematical Methods for Signal Processing
- 625.423 Introduction to Operations Research: Probabilistic Models
- 625.438 Neural Networks
- 625.461 Linear Models and Regression
- 625.462 Design and Analysis of Experiments
- 625.463 Multivariate Statistics and Stochastic Analysis
- 625.464 Computational Statistics
- 625.480 Cryptography
- 625.490 Computational Complexity and Approximation
- 625.495 Time Series Analysis and Dynamic Modeling
- 625.710 Fourier Analysis with Applications to Signal Processing and Differential Equations
- 625.714 Introductory Stochastic Differential Equations with Applications
- 625.721 Probability and Stochastic Process I
- 625.722 Probability and Stochastic Process II
- 625.725 Theory of Statistics I
- 625.726 Theory of Statistics II
- 625.728 Measure-Theoretic Probability
- 625.734 Queuing Theory with Applications to Computer Science
- 625.740 Data Mining
- 625.743 Stochastic Optimization and Control
- 625.744 Modeling, Simulation, and Monte Carlo

II. Applied Analysis

- 625.401 Real Analysis
- 625.402 Modern Algebra
- 625.404 Ordinary Differential Equations
- 625.409 Matrix Theory
- 625.411 Computational Methods
- 625.480 Cryptography
- 625.485 Number Theory
- 625.490 Computational Complexity and Approximation
- 625.703 Functions of a Complex Variable
- 625.710 Fourier Analysis with Applications to Signal Processing and Differential Equations
- 625.717 Advanced Differential Equations: Partial Differential Equations

III. Operations Research

- 625.403 Statistical Methods and Data Analysis
- 625.409 Matrix Theory
- 625.414 Linear Optimization
- 625.415 Nonlinear Optimization
- 625.417 Applied Combinatorics and Discrete Mathematics
- 625.423 Introduction to Operations Research: Probabilistic Models
- 625.436 Graph Theory
- 625.439 Mathematics of Finance
- 625.461 Linear Models and Regression
- 625.462 Design and Analysis of Experiments
- 625.463 Multivariate Statistics and Stochastic Analysis
- 625.490 Computational Complexity and Approximation
- 625.495 Time Series Analysis and Dynamic Modeling
- 625.714 Introductory Stochastic Differential Equations with Applications
- 625.721 Probability and Stochastic Process I
- 625.722 Probability and Stochastic Process II
- 625.725 Theory of Statistics I
- 625.726 Theory of Statistics II
- 625.734 Queuing Theory with Applications to Computer Science
- 625.740 Data Mining
- 625.743 Stochastic Optimization and Control
- 625.744 Modeling, Simulation, and Monte Carlo

IV. Information Technology and Computation

- 625.403 Statistical Methods and Data Analysis
- 625.409 Matrix Theory
- 625.411 Computational Methods
- 625.414 Linear Optimization
- 625.415 Nonlinear Optimization
- 625.417 Applied Combinatorics and Discrete Mathematics
- 625.423 Introduction to Operations Research: Probabilistic Models
- 625.436 Graph Theory
- 625.438 Neural Networks
- 625.461 Linear Models and Regression
Course Descriptions

Courses numbered 700-level and above are open only to students who have been approved for graduate status. Courses are taught mainly at the Applied Physics Laboratory campus, but some courses are also offered at the Dorsey Center, HEAT Center (Aberdeen, MD), SMHEC (St. Mary’s County, MD), and Montgomery County campuses. For continuity, both semesters of a two-semester course should normally be taken at the same campus in the same academic year. Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.

Non-Graduate Credit Courses

The 200-level courses offered are intended to provide mathematical background for graduate course work in EP. These 200-level courses are not for graduate credit. Some students may find one or more of these courses useful as a refresher or to fill gaps in their training.

- **625.201** General Applied Mathematics
- **625.250** Applied Mathematics I
- **625.251** Applied Mathematics II
- **625.260** Introduction to Linear Systems

Non-Graduate Course Characteristics and Relationships

These non-graduate courses have the following characteristics and relationship to each other:

- **625.201** is a broad review of calculus, linear algebra, and ordinary differential equations;
- **625.250** is a deeper review of multivariate calculus and linear algebra, including complex variables, but the course does not cover differential equations (this course may count as a replacement for multivariate calculus for those students lacking the required undergraduate multivariate calculus course);
- **625.251** covers ordinary and partial differential equations and is especially oriented to providing the mathematics background for the Applied Physics Program and some tracks in the Electrical and Computer Engineering Program; and
- **625.260** on linear systems is designed primarily for students with an interest in the theory, transforms, and algorithms associated with linear differential equations.

625.201 General Applied Mathematics

This course is designed for students whose prior background does not fully satisfy the mathematics requirements for admission and/or for students who wish to take a refresher course in applied mathematics. The course provides a review of differential and integral calculus in one or more variables. It covers elementary linear algebra and differential equations, including first- and second-order linear differential equations.
Basic concepts of matrix theory are discussed (e.g., matrix multiplication, inversion, and eigenvalues/eigenvectors). (Not for graduate credit)

Prerequisite: Two semesters of calculus.

Note: This course alone does not fulfill the mathematics requirements for admission to the Applied and Computational Mathematics program; additional course work is required.

D'Archangelo

625.250 Applied Mathematics I

This course covers the fundamental mathematical tools required in applied physics and engineering. The goal is to present students with the mathematical techniques used in engineering and scientific analysis and to demonstrate these techniques by the solution of relevant problems in various disciplines. Areas include vector analysis, linear algebra, matrix theory, and complex variables. (Not for graduate credit)

Prerequisite: Differential and integral calculus.

D'A rchangelo

625.251 Applied Mathematics II

This course is a companion to 625.250. Topics include ordinary differential equations, Fourier series and integrals, the Laplace transformation, Bessel functions and Legendre polynomials, and an introduction to partial differential equations. (Not for graduate credit)

Prerequisite: Differential and integral calculus. Students with no experience in linear algebra may find it helpful to take 625.250 Applied Mathematics I first.

D'Archangelo

625.260 Introduction to Linear Systems

This course is designed primarily for students who do not have a bachelor's degree in electrical engineering. The course may be useful to those with general interests in linear systems analysis, control systems, and/or signal processing. Topics include signal representations, linearity, time-variance, convolution, and Fourier series and transforms. Coverage includes both continuous and discrete-time systems. Practical applications in filter design, modulation/demodulation, and sampling are introduced. (Not for graduate credit)

Prerequisite: Differential and integral calculus.

Effler, Iglesias

625.401 Real Analysis

This course presents a rigorous treatment of fundamental concepts in analysis. Emphasis is placed on careful reasoning and proofs. Topics covered include the completeness and order properties of real numbers, limits and continuity, conditions for integrability and differentiability, and infinite sequences and series. Basic notions of topology and measure are also introduced.

Prerequisite: Multivariate calculus.

Hill

625.402 Modern Algebra

This course examines the structures of modern algebra, including groups, linear spaces, rings, polynomials, and fields and some of their applications to such areas as cryptography, primality testing and the factorization of composite numbers, efficient algorithm design in computing, circuit design, and signal processing. It will include an introduction to quantum information processing. Grading is based on weekly problem sets, a midterm, and a final.

Prerequisites: Multivariate calculus and linear algebra.

Nakos

625.403 Statistical Methods and Data Analysis

This course introduces commonly used statistical methods. The intent of this course is to provide an understanding of statistical techniques and guidance on the appropriate use of methodologies. The course covers the mathematical foundations of common methods as an aid toward understanding both the types of applications that are appropriate and the limits of the methods. MATLAB and statistical software are used so students can apply statistical methodology to practical problems in the workplace. Topics include the basic laws of probability and descriptive statistics, conditional probability, random variables, expectation and variance, discrete and continuous probability models, bivariate distributions and covariation, sampling distributions, hypothesis testing, method of moments and maximum likelihood point (MLE) estimation, confidence intervals, contingency tables, analysis of variance (ANOVA), and linear regression modeling.

Prerequisite: Multivariate calculus.

McQuarrie, S. Wang, Bodt

625.404 Ordinary Differential Equations

This course provides an introduction to the theory, solution, and application of ordinary differential equations. Topics discussed in the course include methods of solving first-order differential equations, existence and uniqueness theorems, second-order linear equations, power series solutions, higher-order linear equations, systems of equations, non-linear equations, Sturm-Liouville theory, and applications. The relationship between differential equations and linear algebra is emphasized in this course. An introduction to numerical solutions is also provided. Applications of differential equations in physics, engineering, biology, and economics are presented. This course covers more material at greater depth than the standard undergraduate-level ODE course.

Prerequisite: Two or more terms of calculus are required. Course in linear algebra would be helpful.

Farris

625.409 Matrix Theory

In this course, topics include the methods of solving linear equations, Gaussian elimination, triangular factors and row exchanges, vector spaces (linear independence, basis, dimension, and linear transformations), orthogonality (inner prod-
625.411 Computational Methods

As the need to increase the understanding of real-world phenomena grows rapidly, computer-based simulations and modeling tools are increasingly being accepted as viable means to study such problems. In this course, students are introduced to some of the key computational techniques used in modeling and simulation of real-world phenomena. The course begins with coverage of fundamental concepts in computational methods including error analysis, matrices and linear systems, convergence, and stability. It proceeds to curve fitting, least squares, and iterative techniques for practical applications, including methods for solving ordinary differential equations and simple optimization problems. Elements of computer visualization and Monte Carlo simulation will be discussed as appropriate. The emphasis here is not so much on programming technique, but rather on understanding basic concepts and principles. Employment of higher level programming and visualization tools, such as MATLAB, reduces burdens on programming and introduces a powerful tool set commonly used by the industries and academia. A consistent theme throughout the course is the linkage between the techniques covered and their applications to real-world problems.

Prerequisites: Multivariate calculus and ability to program in MATLAB, FORTRAN, C++, or other language. Courses in matrix theory or linear algebra and differential equations would be helpful but are not required.

Joyce

625.414 Linear Optimization

Optimization is the act of obtaining the best result while satisfying given constraints. This course focuses mainly on linear programming and the geometry of linear systems. Though “straightforward” in nature, linear programs have a wide variety of real world applications such as production planning, worker scheduling, and resource allocation. Linear programming is used in a number of fields: manufacturing, transportation, and military operations are just a few. In this course, we will cover solution techniques for linear programs including the simplex method, the revised simplex method, the dual simplex method, and, time permitting, interior point methods. We will also investigate linear programming geometry and duality, theorems of the alternative, and sensitivity analysis. In parallel with our theoretical development we will consider how to formulate mathematical programs for a variety of applications including familiar network models such as the assignment, transshipment, transportation, shortest path, and maximum flow problems. We will also present some methods and applications for integer programming problems (e.g., branch and bound and cutting plane methods) and discuss the role of multiobjective linear programming and goal programming in this area.

Prerequisites: Multivariate calculus, linear algebra. Some real analysis would be good but is not required.

Castello

625.415 Nonlinear Optimization

Although a number of mathematical programming problems can be formulated and solved using techniques from linear and integer problems, there are a wide variety of problems that require the inclusion of nonlinearities if they are to be properly modeled. This course presents theory and algorithms for solving nonlinear optimization problems. Theoretical topics treated include basic convex analysis, first and second order optimality conditions, KKT conditions, constraint qualification, and duality theory. We will investigate an array of algorithms for both constrained and unconstrained optimization. These algorithms include the Nelder-Mead (nonlinear simplex method), steepest descent, Newton methods, conjugate direction methods, penalty methods, and barrier methods. In parallel with our theoretical and algorithmic development we will consider how to formulate mathematical programs for an assortment of applications including facility location, regression analysis, financial evaluation, and policy analysis. If time permits, we will also address algorithms for special classes of nonlinear optimization problems (e.g., separable programs, convex programs, and quadratic programs).

Prerequisites: Multivariate calculus, linear algebra. Some real analysis would be good but is not required; 625.414 (Linear Optimization) is not required.

Castello

625.417 Applied Combinatorics and Discrete Mathematics

Combinatorics and discrete mathematics are increasingly important fields of mathematics because of their extensive applications in computer science, statistics, operations research, and engineering. The purpose of this course is to teach students to model, analyze, and solve combinatorial and discrete mathematical problems. Topics include elements of graph theory, graph coloring and covering circuits, the pigeonhole principle, counting methods, generating functions, recurrence relations and their solution, and the inclusion-exclusion formula. Emphasis is on the application of the methods to problem solving. (This course is the same as 605.423 Applied Combinatorics and Discrete Mathematics.)

Whisnant

625.420 Mathematical Methods for Signal Processing

This course familiarizes the student with modern techniques of digital signal processing and spectral estimation of discrete-
time or discrete-space sequences derived by the sampling of continuous-time or continuous-space signals. The class covers the mathematical foundation needed to understand the various signal processing techniques as well as the techniques themselves. Topics include the discrete Fourier transform, the discrete Hilbert transform, the singular-value decomposition, the wavelet transform, classical spectral estimates (periodogram and correlogram), autoregressive, autoregressive-moving average spectral estimates, and Burg maximum entropy method.

Prerequisites: Mathematics through calculus, matrix theory or linear algebra, and introductory probability theory and/or statistics. Students are encouraged to refer any questions to the instructor.

Boules

625.423 Introduction to Operations Research: Probabilistic Models

This course investigates several probability models that are important to operations research applications. Models covered include Markov chains, birth and death processes, queuing theory, reliability theory, scheduling and inventory theory, forecasting, decision theory, Bayesian networks, and simulation. The course emphasizes both the theoretical development of these models and the application of the models to areas such as engineering, computer science, and management science.

Prerequisites: Multivariate calculus and a course in probability and statistics (such as 625.403).

Akinpelu

625.436 Graph Theory

This course focuses on the mathematical theory of graphs; a few applications and algorithms will be discussed. Topics include trees, connectivity, Eulerian and Hamiltonian graphs, matchings, edge and vertex colorings, independent sets and cliques, planar graphs, and directed graphs. An advanced topic completes the course. Familiarity with linear algebra and basic counting methods such as binomial coefficients is assumed. Comfort with reading and writing mathematical proofs is required.

Prerequisite: Linear algebra.

Scheinerman, Devinney

625.438 Neural Networks

This course provides an introduction to concepts in neural networks and connectionist models. Topics include parallel distributed processing, learning algorithms, and applications. Specific networks discussed include Hopfield networks, bidirectional associative memories, perceptrons, feedforward networks with back propagation, and competitive learning networks, including self-organizing and Grossberg networks. Software for some networks is provided. *(This course is the same as 605.447 Neural Networks.)*

Fleischer, Whisnant

625.439 Mathematics of Finance

This course offers a rigorous treatment of the subject of investment as a scientific discipline. Mathematics is employed as the main tool to convey the principles of investment science and their use to make investment calculations for good decision making. Topics covered in the course include the basic theory of interest and its applications to fixed-income securities, cash flow analysis and capital budgeting, mean-variance portfolio theory and the associated capital asset pricing model, utility function theory and risk analysis, derivative securities and basic option theory, and portfolio evaluation.

Prerequisites: Multivariate calculus and an introductory course in probability and statistics (such as 625.403). Some familiarity with optimization is desirable but not necessary.

Peny

625.461 Linear Models and Regression

Introduction to regression and linear models including least squares estimation, maximum likelihood estimation, the Gauss-Markoff Theorem, and the Fundamental Theorem of Least Squares. Topics include estimation, hypothesis testing, simultaneous inference, model diagnostics, transformations, multicollinearity, influence, model building, and variable selection. Advanced topics include nonlinear regression, robust regression, and generalized linear models including logistic and Poisson regression.

Prerequisites: One semester of statistics (such as 625.403), multivariate calculus, and linear algebra.

McQuarrie

625.462 Design and Analysis of Experiments

Statistically designed experiments are the efficient allocation of resources to maximize the amount of information obtained with a minimum expenditure of time and effort. Design of experiments is applicable to both physical experimentation and computer simulation models. This course covers the principles of experimental design, the analysis of variance method, the difference between fixed and random effects and between nested and crossed effects, and the concept of confounded effects. The designs covered include completely random, randomized block, Latin squares, split-plot, factorial, fractional factorial, nested treatments and variance component analysis, response surface, optimal, Latin hypercube, and Taguchi. Any experiment can correctly be analyzed by learning how to construct the applicable design structure diagram (Hasse diagrams).

Prerequisites: Multivariate calculus, linear algebra, and one semester of graduate probability and statistics (e.g., 625.403 Statistical Methods and Data Analysis). Some computer-based homework assignments will be given.

Bodt

625.463 Multivariate Statistics and Stochastic Analysis

Multivariate analysis arises with observations of more than one variable when there is some probabilistic linkage between the variables. In practice, most data collected by researchers in vir-
Graduate Programs

Applied and Computational Mathematics

Multivariate analysis consists of methods that can be used to study several variables at the same time so that the full structure of the data can be observed and key properties can be identified. This course covers estimation, hypothesis tests, and distributions for multivariate mean vectors and covariance matrices. We also cover popular multivariate data analysis methods including multivariate data visualization, maximum likelihood, principal components analysis, multiple comparisons tests, multidimensional scaling, cluster analysis, discriminant analysis and multivariate analysis of variance, multiple regression and canonical correlation, and analysis of repeated measures data. Course work will include computer assignments.

Prerequisites: Linear algebra, multivariate calculus, and one semester of graduate probability and statistics (e.g. 625.403).

Hung

625.464 Computational Statistics

Computational statistics is a branch of mathematical sciences concerned with efficient methods for obtaining numerical solutions to statistically formulated problems. This course will introduce students to a variety of computationally intensive statistical techniques and the role of computation as a tool of discovery. Topics include numerical optimization in statistical inference (expectation-maximization [EM] algorithm, Fisher scoring, etc.), random number generation, Monte Carlo methods, randomization methods, jackknife methods, bootstrap methods, tools for identification of structure in data, estimation of functions (orthogonal polynomials, splines, etc.), and graphical methods. Additional topics may vary. Course work will include computer assignments.

Prerequisites: Multivariate calculus, familiarity with basic matrix algebra, graduate course in probability and statistics (such as 625.403).

Nickel

625.480 Cryptography

An important concern in the information age is the security, protection, and integrity of electronic information, including communications, electronic funds transfer, power system control, transportation systems, and military and law enforcement information. Modern cryptography, in applied mathematics, is concerned not only with the design and exploration of encryption schemes (classical cryptography) but also with the rigorous analysis of any system that is designed to withstand malicious attempts to tamper with, disturb, or destroy it. This course introduces and surveys the field of modern cryptography. After mathematical preliminaries from probability theory, algebra, computational complexity, and number theory, we will explore the following topics in the field: foundations of cryptography, public key cryptography, probabilistic proof systems, pseudorandom generators, elliptic curve cryptography, and fundamental limits to information operations.

Prerequisites: Linear algebra and an introductory course in probability and statistics such as 625.403 Statistical Methods and Data Analysis.

Nakos

625.485 Number Theory

This course covers principal ideas of classical number theory, including the fundamental theorem of arithmetic and its consequences, congruences, cryptography and the RSA method, polynomial congruences, primitive roots, residues, multiplicative functions, and special topics.

Prerequisites: Multivariate calculus and linear algebra.

Stern

625.490 Computational Complexity and Approximation

This course will cover the theory of computational complexity, with a focus on popular approximation and optimization problems and algorithms. It begins with important complexity concepts including Turing machines, Karp and Turing reducibility, basic complexity classes, and the theory of NP-completeness. It then discusses the complexity of well-known approximation and optimization algorithms, and introduces approximability properties, with special focus on approximation algorithm and heuristic design. The impact of emerging computing techniques, such as massive parallelism and quantum computing, will also be discussed. The course will specifically target algorithms with practical significance and techniques that can improve performance in real-world implementations.

Prerequisites: Introductory probability theory and/or statistics (such as 625.403) and undergraduate-level exposure to algorithms and matrix algebra. Some familiarity with optimization and computing architectures is desirable but not necessary.

Wood

625.495 Time Series Analysis and Dynamic Modeling

This course will be a rigorous and extensive introduction to modern methods of time series analysis and dynamic modeling. Topics to be covered include elementary time series models, trend and seasonality, stationary processes, Hilbert space techniques, the spectral distribution function, autoregressive/integrated/moving average (ARIMA) processes, fitting ARIMA models, forecasting, spectral analysis, the periodogram, spectral estimation techniques, multivariate time series, linear systems and optimal control, state-space models, and Kalman filtering and prediction. Additional topics may be covered if time permits. Some applications will be provided to illustrate the usefulness of the techniques.

Prerequisites: Graduate course in probability and statistics (such as 625.403); familiarity with matrix theory and linear algebra.

Note: This course is also offered in the Department of Applied Mathematics and Statistics (Homewood campus).

Torcaso
625.703 Functions of a Complex Variable
Topics include properties of complex numbers, analytic functions, Cauchy's theorem and integral formulas, Taylor and Laurent series, singularities, contour integration and residues, and conformal mapping.
Prerequisite: 625.401 Analysis, or 625.404 Ordinary Differential Equations, or permission of the instructor.

Whisnant

625.710 Fourier Analysis with Applications to Signal Processing and Differential Equations
This applied course covers the theory and applications of Fourier analysis, including the Fourier transform, the Fourier series, and the discrete Fourier transform. Applications in signal processing will be emphasized, including the sampling theorem and aliasing, convolution theorems, spectral analysis, and the imaging point spread function. Further applications, also incorporating the Laplace transform, will be taken from studies of differential equations arising in engineering and physics.
Prerequisite: Some familiarity with complex variables, differential equations, and linear algebra.

Spencer

625.714 Introductory Stochastic Differential Equations with Applications
The goal of this course is to give basic knowledge of stochastic differential equations useful for scientific and engineering modeling, guided by some problems in applications. The course treats basic theory of stochastic differential equations including weak and strong approximation, efficient numerical methods and error estimates, the relation between stochastic differential equations and partial differential equations, Monte Carlo simulations with applications in financial mathematics, population growth models, parameter estimation, and filtering and optimal control problems.
Prerequisite: Multivariate calculus and a graduate course in probability and statistics. Exposure to ordinary differential equations.

Staff

625.717 Advanced Differential Equations: Partial Differential Equations
This course presents practical methods for solving partial differential equations (PDEs). The course covers solutions of hyperbolic, parabolic, and elliptic equations in two or more independent variables. Topics include Fourier series, separation of variables, existence and uniqueness theory for general higher order equations, eigenfunction expansions, finite difference and finite element numerical methods, Green's functions, and transform methods. MATLAB, a high-level computing language, is used throughout the course to complement the analytical approach and to introduce numerical methods.
Prerequisite: 625.404 Ordinary Differential Equations or equivalent graduate-level ODE class and knowledge of eigenvalues and eigenvectors from matrix theory.

Note: The standard undergraduate-level ODE class alone is not sufficient to meet the prerequisites for this class.

Farris

625.718 Advanced Differential Equations: Nonlinear Differential Equations and Dynamical Systems
This course examines ordinary differential equations from a geometric point of view and involves significant use of phase-plane diagrams and associated concepts, including equilibrium points, orbits, limit cycles, and domains of attraction. Various methods are discussed to determine existence and stability of equilibrium points and closed orbits. Methods are discussed for analyzing nonlinear differential equations (e.g., linearization, direct, perturbation, and bifurcation analysis). An introduction to chaos theory and Hamiltonian systems is also presented. The techniques learned will be applied to equations from physics, engineering, biology, ecology, and neural networks (as time permits).
Prerequisites: 625.404 Ordinary Differential Equations or equivalent graduate-level ODE class and knowledge of eigenvalues and eigenvectors from matrix theory.
Note: The standard undergraduate-level ODE class alone is not sufficient to meet the prerequisites for this class. 625.717 is not required.

Farris

625.721 Probability and Stochastic Process I
The course is an introduction to probability theory. Topics include sample space, combinatorial analysis, conditional probability, discrete and continuous distributions, expectation and generating functions, laws of large numbers, and central limit theorem. This course is proof oriented and the primary purpose is to lay the foundation for the second course 625.722 and other specialized courses in probability.
Prerequisite: Multivariate calculus and 625.403 Statistical Methods and Data Analysis or equivalent.

Aminzadeh

625.722 Probability and Stochastic Process II
This course is an introduction to the theory of discrete-time stochastic processes. Emphasis in the course is given to Poisson processes, renewal theory, renewal reward process, Markov chains, continuous-time Markov chains, birth and death process, Brownian motion, and random walks.
Prerequisite: Differential equations and 625.721 Probability and Stochastic Process I or equivalent.

Aminzadeh

625.725 Theory of Statistics I
This course covers mathematical statistics and probability. Topics covered include discrete and continuous probability distributions, expected values, moment-generating functions, sampling theory, convergence concepts, and the central limit theorem. This course is a rigorous treatment of statistics that
lays the foundation for 625.726 and other advanced courses in statistics.
Prerequisites: Multivariate calculus and 625.403 Statistical Methods and Data Analysis or equivalent.

Aminzadeh

625.726 Theory of Statistics II

This course is the continuation of 625.725. It covers methods of moments estimation, maximum likelihood estimation, the Cramér-Rao inequality, sufficiency and completeness of statistics, uniformly minimum variance unbiased estimators, the Neyman-Pearson Lemma, the likelihood ratio test, goodness-of-fit tests, confidence intervals, selected non-parametric methods, and decision theory.
Prerequisites: 625.725 Theory of Statistics I or equivalent.

Aminzadeh

625.728 Measure-Theoretic Probability

This course provides a rigorous, measure-theoretic introduction to probability theory. It begins with the notion of fields, sigma-fields, and measurable spaces, and also surveys elements from integration theory and introduces random variables as measurable functions. It then examines the axioms of probability theory and fundamental concepts including conditioning, conditional probability and expectation, independence, and modes of convergence. Other topics covered include characteristic functions, basic limit theorems (including the weak and strong laws of large numbers), the central limit theorem, and martingales.
Prerequisites: 625.401 Real Analysis and 625.403 Statistical Methods and Data Analysis.

Hill

625.734 Queuing Theory with Applications to Computer Science

Queues are a ubiquitous part of everyday life; common examples are supermarket checkout stations, help desk call centers, manufacturing assembly lines, wireless communication networks, and multi-tasking computers. Queuing theory provides a rich and useful set of mathematical models for the analysis and design of service process for which there is contention for shared resources. This course explores both theory and application of fundamental and advanced models in this field. Fundamental models include single and multiple server Markov queues, bulk arrival and bulk service processes, and priority queues. Applications emphasize communication networks and computer operations, but may include examples from transportation, manufacturing, and the service industry. Advanced topics may vary. *(This course is the same as 605.725, Queuing Theory with Applications.)*
Prerequisites: Multivariate calculus and a graduate course in probability and statistics such as 625.403.

Nickel

625.740 Data Mining

Data mining is a relatively new term used in the academic and business world, often associated with the development and quantitative analysis of very large databases. Its definition covers a wide spectrum of analytic and information technology topics, such as machine learning, pattern recognition, artificial intelligence, statistical modeling, and efficient database development. This course will review these broad topics and cover specific analytic and modeling techniques such as data cleaning techniques; principal components; regression; decision trees; neural networks; support vector machines; nearest neighbor; clustering; association rules; generalization error; and the holdout, cross-validation, and bootstrap methods. Mathematics underlying these techniques will be discussed and their application to real-world data will be illustrated. Because use of the computer is extremely important when “mining” large amounts of data, we will make substantial use of data mining software tools to learn the techniques and analyze datasets.
Prerequisites: Multivariate calculus, linear algebra and matrix theory (e.g., 625.409), and a course in probability and statistics (such as 625.403). This course will also assume familiarity with multiple linear regression and basic ability to program.

Aksakalli

625.743 Stochastic Optimization and Control

Stochastic optimization plays an increasing role in the analysis and control of modern systems. This course introduces the fundamental issues in stochastic search and optimization with special emphasis on cases where classical deterministic search techniques (steepest descent, Newton-Raphson, linear and nonlinear programming, etc.) do not readily apply. These cases include many important practical problems, which will be briefly discussed throughout the course (e.g., neural network training, nonlinear control, experimental design, simulation-based optimization, sensor configuration, image processing, discrete-event systems, etc.). Both global and local optimization problems will be considered. Techniques such as random search, least mean squares (LMS), stochastic approximation, simulated annealing, evolutionary computation (including genetic algorithms), and machine learning are discussed.
Prerequisites: Multivariate calculus, linear algebra, and one semester of graduate probability and statistics (e.g., 625.403 Statistical Methods and Data Analysis). Some computer-based homework assignments will be given. It is recommended that this course only be taken in the last half of a student’s degree program.

Spall

625.744 Modeling, Simulation, and Monte Carlo

Computer simulation and related Monte Carlo methods are widely used in engineering, scientific, and other work. Simulation provides a powerful tool for the analysis of real-world systems when the system is not amenable to traditional analytical approaches. In fact, recent advances in hardware,
software, and user interfaces have made simulation a “first line” method of attack for a growing number of problems. Areas where simulation-based approaches have emerged as indispensable include decision aiding, prototype development, performance prediction, scheduling, and computer-based personnel training. This course introduces concepts and statistical techniques that are critical to constructing and analyzing effective simulations, and discusses certain applications for simulation and Monte Carlo methods. Topics include random number generation, simulation-based optimization, model building, bias-variance tradeoff, input selection using experimental design, Markov chain Monte Carlo (MCMC), and numerical integration.

Prerequisites: Multivariate calculus, familiarity with basic matrix algebra, and a graduate course in probability and statistics (such as 625.403). Some computer-based homework assignments will be given. It is recommended that this course only be taken in the last half of a student’s degree program.

Spall

625.800 Independent Study in Applied and Computational Mathematics

An individually tailored, supervised project on a subject related to applied and computational mathematics. The independent study project proposal form must be approved prior to registration. A maximum of one independent study course may be applied toward the master of science degree or post-master’s certificate. This course may only be taken in the second half of a student’s degree program.

Staff
Applied Biomedical Engineering

Biomedical engineering is the application of knowledge from engineering and physics to enhance the understanding of and provide solutions to problems in biology and medicine. The goal of the Master of Science in Applied Biomedical Engineering program is to educate and train practicing scientists and engineers to be able to carry out engineering-oriented research and development in the biomedical sciences. The strength of the Applied Biomedical Engineering program lies in the active involvement of the faculty in research and development. The majority of the courses are offered at the APL campus; however, some electives are offered only at the Homewood campus.

Program Committee

Russell L. McCally, Program Chair
Principal Professional Staff, Applied Physics Laboratory
Associate Professor of Ophthalmology, School of Medicine

Isaac N. Bankman
Principal Professional Staff, Applied Physics Laboratory
Assistant Professor of Biomedical Engineering, School of Medicine

Eileen Haase
Instructor, Biomedical Engineering, School of Medicine

Murray B. Sachs
Principal Professional Staff, Applied Physics Laboratory
Professor of Biomedical Engineering, School of Medicine

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program outlined in this catalog in the Admission Requirements section. In addition, the applicant must have compiled an average of B (3.0 on a 4.0 scale) or above for all courses in mathematics, physics, engineering, and the other physical and biological sciences. The applicant’s preparation must have included: (1) mathematics, through ordinary differential equations; (2) calculus-based physics, including mechanics, heat and energy, electricity and magnetism, and elementary quantum concepts; and (3) chemistry, inorganic and organic. Noncredit courses in organic chemistry and mathematics are offered for those who may need them to satisfy the eligibility requirements or to refresh their knowledge. The noncredit mathematics course is offered in the applied and computational mathematics program.

Course Requirements

A total of 10 one-semester courses must be completed within five years. The curriculum consists of five required courses listed in Section II in this program, three to four courses elected from the applied biomedical engineering curriculum listed in Section III, and one to two courses elected from other offerings of the Whiting School of Engineering with the approval of the student’s advisor. Also, with advisor approval, an elective course may be substituted for a required course if the student has previously completed an equivalent graduate level course or can demonstrate competency. Students may also select graduate electives from the Department of Biomedical Engineering, which are listed in Section IV, with the approval of their advisor and the instructor. These courses are offered either at the medical school or Homewood campuses at their regularly scheduled hours during the day. With approval of their advisor, students may also partially fulfill the elective requirement with related courses offered through the part-time programs of the Krieger School of Arts and Sciences. At least four electives must be for advanced graduate credit, i.e., at the 600-, 700-, or 800-level. Students are required to file a program plan listing the courses they plan to take. The program plan must be approved by the student’s advisor.

I. Noncredit Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>585.209</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>625.201</td>
<td>General Applied Mathematics</td>
</tr>
</tbody>
</table>

II. Required Courses

Five one-semester courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>585.405-406</td>
<td>Physiology for Applied Biomedical Engineering</td>
</tr>
<tr>
<td>585.407</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>585.408</td>
<td>Medical Sensors and Devices</td>
</tr>
<tr>
<td>585.409</td>
<td>Mathematical Methods for Applied Biomedical Engineering</td>
</tr>
</tbody>
</table>

III. Elective Courses

Offered at the Applied Physics Laboratory or the Dorsey Center. The intent is to offer additional electives as the program matures.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>585.605</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>585.606</td>
<td>Medical Image Processing</td>
</tr>
<tr>
<td>585.607</td>
<td>Medical Imaging II: MRI</td>
</tr>
<tr>
<td>585.608</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>585.609</td>
<td>Cell Mechanics</td>
</tr>
<tr>
<td>585.610</td>
<td>Biochemical Sensors</td>
</tr>
<tr>
<td>585.611</td>
<td>Practices of Biomedical Engineering</td>
</tr>
<tr>
<td>585.614</td>
<td>Applications of Physics and Technology to Biomedicine</td>
</tr>
<tr>
<td>585.618</td>
<td>Biological Fluid and Solid Mechanics</td>
</tr>
<tr>
<td>585.620</td>
<td>Orthopedic Biomechanics</td>
</tr>
<tr>
<td>585.624</td>
<td>Neural Prosthetics: Science, Technology, and Applications</td>
</tr>
<tr>
<td>585.626</td>
<td>Biomimetics in Biomedical Engineering</td>
</tr>
<tr>
<td>585.634</td>
<td>Biophotonics</td>
</tr>
<tr>
<td>585.800</td>
<td>Special Project in Applied Biomedical Engineering</td>
</tr>
<tr>
<td>585.801</td>
<td>Directed Studies in Applied Biomedical Engineering</td>
</tr>
</tbody>
</table>
IV. Elective Courses
Offered at the Homewood campus or the medical school. (These may be taken for credit if the prerequisites can be satisfied and with the approval of the instructor.)

580.625-626 Structure and Function of the Auditory and Vestibular Systems
580.628 Modeling the Auditory System
580.630 Theoretical Neuroscience
580.632 Ionic Channels in Excitable Membranes
580.634 Molecular and Cellular Systems Physiology Laboratory
580.637 Cellular and Tissue Engineering
580.638 Cell Mechanics and Motility
580.644 Neural Control of Movement and Vocalization
580.651 Introduction to Nonlinear Dynamics in Physiology
580.673 Advanced Seminar in Magnetic Resonance Imaging
580.683 High Performance Computing in Biology
580.684 Experimental Foundations for Neural Models
580.702 Neuroengineering

Course Descriptions

Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.

585.209 Organic Chemistry
This course offers an in-depth review and study of organic chemistry. Topics include the fundamental chemistry of carbon compounds, chemical bonding, synthesis, reaction mechanisms, and stereochemistry. The role of organic chemistry in biology and medicine, environmental science, and industry is discussed. (Not for credit for the Master of Science in Applied Biomedical Engineering degree.)

Potember

585.405-406 Physiology for Applied Biomedical Engineering
This two-semester sequence is designed to provide the physiological background necessary for advanced work in biomedical engineering. A quantitative model-oriented approach to physiological systems is stressed. First-term topics include the cell and its chemistry, transport and the cell membrane, properties of excitable tissue and muscle, the cardiovascular system, and the respiratory system. The second term course covers anatomy of the nervous system, structure and functions of the auditory and visual systems, motor systems, the kidney and gastrointestinal tract, and the neural and neuroendocrine control of the circulation.

Prerequisite: 585.209 Organic Chemistry. Two-term course.

Haase, Berman, Staff

585.407 Molecular Biology
The course is intended to serve as a fundamental introduction to cell and molecular biology. Topics generally included are basic chemistry and biochemistry of the cell; structure, function, and dynamics of macromolecules; cell organization; enzyme kinetics; membranes and membrane transport; biochemistry of cellular energy cycles, including oxidative phosphorylation; replication, transcription, and translation; regulation of gene expression; and recombinant DNA technology. Where appropriate, biomedical application and devices based on principles from cell and molecular biology are emphasized.

Prerequisite: 585.209 Organic Chemistry.

Potember, DiNovo-Collela

585.408 Medical Sensors and Devices
This course covers the basic and advanced principles, concepts, and operations of medical sensors and devices. The origin and nature of measurable physiological signals are studied, including chemical, electrochemical, optical, and electromagnetic signals. The principles and devices to make the measurements, including a variety of electrodes and sensors, will be first discussed. This will be followed by a rigorous presentation of the design of appropriate electronic instrumentation. Therapeutic instrumentation such as pacemakers, defibrillators, and prosthetic devices will be reviewed. The final part of this course will cover emerging frontiers of cellular and molecular instrumentation and the use of micro- and nanotechnology in these biotechnology fields. The lectures will be followed by realistic experimentation in two laboratory sessions where students will obtain hands-on experience with electronic components, sensors, biopotential measurements, and testing of therapeutic instrumentation.

Thakor, Staff

585.409 Mathematical Methods for Applied Biomedical Engineering
The course covers mathematical techniques needed to solve advanced problems encountered in applied biomedical engineering. Fundamental concepts are presented with emphasis placed on applications of these techniques to biomedical engineering problems. Topics include solution of ordinary differential equations using the Laplace transformation, Fourier series and integrals, solution of partial differential equations including the use of Bessel functions and Legendre polynomials, and an introduction to complex analysis.

Prerequisite: Familiarity with multi-variable calculus, linear algebra, and ordinary differential equations.

Rio
585.605 Medical Imaging
This course examines fundamental physical concepts, instrumentation, and signal processing techniques used to produce images in radiography, ultrasonography, tomography, magnetic resonance imaging, and nuclear medicine.

Prerequisite: 585.409 Mathematical Methods for Applied Biomedical Engineering or equivalent.

585.606 Medical Image Processing
This course covers digital image processing techniques used for the analysis of medical images such as x-ray, ultrasound, CT, MRI, PET, microscopy, etc. The presented image enhancement algorithms are used for improving the visibility of significant structures as well as for facilitating subsequent automated processing. The localization and identification of target structures in medical images are addressed with several segmentation and pattern recognition algorithms of moderate complexity. Image reconstruction algorithms used for three-dimensional image formation are presented. The course covers image registration algorithms used to determine the correspondence of multiple images of the same anatomical structure. Image compression algorithms applied to medical images are also addressed.

Prerequisite: Familiarity with linear algebra and Fourier transforms.

Bankman, Pham, Spisz

585.607 Medical Imaging II: MRI
Following the increasing use and development of new MRI methods, a course on advanced MRI concepts and applications was designed as part of the imaging area of emphasis. Medical Imaging II provides more information on the physics, imaging procedures, and advanced techniques of MRI and includes two lectures on nuclear medicine.

Prerequisite: 585.409 Mathematical Methods for Applied Biomedical Engineering or equivalent.

Spencer

585.608 Biomaterials
This course covers the fundamentals of the synthesis, properties, and biocompatibility of metallic, ceramic, polymeric, and biological materials that come in contact with tissue and biological fluids. Emphasis is placed on using biomaterials for both hard and soft tissue replacement, organ replacement, coatings and adhesives, dental implants, and drug delivery systems. New trends in biomaterials, such as electrically conductive polymers, piezoelectric biomaterials, and sol-gel processing are discussed, and the recent merging of cell biology and biochemistry with materials is examined. Case studies and in-class scenarios are frequently used to highlight the current opportunities and challenges of using biomaterials in medicine.

Prerequisite: 585.209 Organic Chemistry.

Potember

585.609 Cell Mechanics
The class starts with introductory lectures on the place of cell mechanics in the broader areas of cell biology, physiology, and biophysics, where the general topics of cell structure, motility, force generation, and interaction with the extracellular matrix are considered. Three important case studies are discussed: blood cells, vascular endothelial cells, and cochlear hair cells. The analysis of each of these cases includes constitutive relations, experiments to estimate cellular parameters, and biological and physiological implications. The constitutive relations are based on nonlinear viscoelasticity in the cases of blood and endothelial cells and linear piezoelectricity in the case of hair cells. The necessary components of engineering mechanics of solids and fluids are introduced. The effective mechanical characteristics of the cell are related to the structure and properties of the cellular membrane, cytoskeleton, and nucleus. Micropipette aspiration, atomic force microscopy, and magnetic cyrometry techniques are discussed in detail.

Students also read and make presentations of original journal papers covering additional topics. This exposes them to the professional literature and hones their communication skills.

Spector

585.610 Biochemical Sensors
This course covers the fundamental principles and practical aspects of chemical sensing of physiological signals. The focus of the course is on the electrochemistry and biophysical chemistry of biological sensing elements and their integration with signal transducers. Other topics covered include design and construction of practical sensors, processing and interpretation of signal outputs, and emerging technologies for biosensing.

Potember, Bryden

585.611 Practices of Biomedical Engineering
The goal of this course is to present a methodical approach to practical biomedical engineering. The topics include innovation in research and engineering; contracting with the federal government; writing business plans and technical proposals; legal issues such as liability, patents, and the FDA approval process; the practice of biomedical engineering in industry; approaches to biomedical problems, including systems engineering and prototyping; and other issues involved in managing a research program such as marketing, sales, service, and other economic factors. A team of leading biomedical engineers and technical program managers teaches the course.

Potember, Staff

585.614 Applications of Physics and Technology to Biomedicine
The goal of this course is to expose students to several concrete examples of how physical and technological methods are used in biomedicine. Examples will be chosen from ophthalmology (e.g., how the optical properties of the eye's cornea are related to its ultrastructure, applications of lasers, methods of measuring ocular blood flow and intraocular pressure); topics in biomedical optics (e.g., microscopy, optical coherence tomog-
Biomimetics refers to human-made processes, substances, devices, or systems that imitate nature. This course focuses on substances prepared and engineered to meet biomedical uses. It is designed to provide students with: 1) an understanding of the biomimetic process of self-assembly, 2) an introduction to bioengineering biological materials and novel biomimetic materials that include forms and structures useful to bioengineering, and 3) an understanding of how different instruments may be used for imaging, identification, and characterization of biological and biomimetic materials. Detailed knowledge of biological structure hierarchy is essential for most areas of biomedical engineering, and biological materials are becoming an increasingly important resource in creating new biomimetic materials that possess targeted biological structural and functional properties.

Deacon, Trexler

585.634 Biophotonics
This course introduces the fundamental principles of biophotonics and their applications to real-world devices. In a combination of laboratory and classroom exercises, students will design optical systems for evaluation of optical properties of biological media as well as learn computational methods to simulate light transport in such media. Modern optical measurement techniques including fluorescence spectroscopy, optical coherence tomography, and confocal microscopy will be covered in detail.

Sova, Ramella-Roman

585.800 Special Project in Applied Biomedical Engineering
This course is an individually tailored, supervised project that offers the student research experience through work on a special problem related to the student's speciality or area of interest. The research problem can be addressed experimentally or analytically. A written report is produced on which the grade is based. This course is open only to graduate candidates in the Master of Science in Applied Biomedical Engineering program. The applied biomedical engineering project proposal form must be completed prior to registration.

Prerequisite: Permission of the instructor.

585.801 Directed Studies in Applied Biomedical Engineering
This course permits the student to investigate possible research fields or pursue topics of interest through reading or nonlaboratory study under the direction of a faculty member. This course is open only to graduate candidates in the Master of Science in Applied Biomedical Engineering program. The applied biomedical engineering directed studies proposal form must be completed prior to registration.

Prerequisite: Permission of the instructor.

580.625-626 Structure and Function of the Auditory and Vestibular Systems

McCally, Staff

585.618 Biological Fluid and Solid Mechanics
The goal of this class is to learn the relation between the mechanics and physiology (biology) of tissues and cells. This relation is demonstrated by introducing general models of solid and fluid mechanics and applying them to the cardiovascular system and bones. In particular, the arterial wall and endothelial cell mechanics as well as bone anisotropic properties and remodeling are discussed. The course also shows how theoretical models are used to interpret experiments and how experimental data are used to estimate important parameters (constants) of the models. Experiments with biaxial stretching, micropipette aspiration, and atomic force microscopy commonly used to probe the mechanical properties of tissues and cells are discussed in detail. The models include anisotropic linear elasticity, nonlinear elasticity, viscoelasticity, and Newtonian (non-Newtonian) fluid dynamics.

Spector

585.620 Orthopedic Biomechanics
This course serves as an introduction to the field of orthopedic biomechanics for the biomedical engineer. Structure and function of the musculoskeletal system in the intact and pathologic states will be reviewed. Further discussion will focus on the design of orthopedic implants for the spine and the appendicular skeleton. Biomechanical principles of fracture repair and joint reconstruction will also be addressed. Peer reviewed journal publications will be used to explore the latest developments in this field.

Prerequisite: 585.405-406 Physiology for Applied Biomedical Engineering (or equivalent).

Dimitriev

585.624 Neural Prosthetics: Science, Technology, and Applications
This course addresses the scientific bases, technologies, and chronic viability of emerging neuroprosthetic devices. Examples include cochlear and retinal implants for sensory restoration, cortical and peripheral nervous system and brain computer interface devices for deriving motor control and enabling afferent feedback, rehabilitative and therapeutic devices such as deep brain stimulators for Parkinson's disease, functional electrical stimulation systems for spinal cord injuries, and cognitive prosthetic systems for addressing brain trauma. Regulatory (FDA) challenges with emerging technologies and ethical considerations will also be addressed.

Harshbarger, Staff
This course covers the physiological mechanisms of hearing and balance. Topics include transmission of sound in the ear, transduction of sound and head orientation by hair cells, biophysics and biochemistry of hair cells, representation of sound and balance in eighth-nerve discharge patterns, anatomy of the central auditory and vestibular systems, and synaptic transmission and signal processing in central neurons. Aspects of hearing and balance such as speech perception, sound localization, vestibular reflexes, and vestibular compensation are discussed with an integrated perspective covering perceptual, physiological, and mechanistic data.

Prerequisite: 580.421-422 Physiological Foundations for Biomedical Engineering or equivalent. Recommended: 110.302 Differential Equations, 520.214 Signals and Systems.

Sachs, Young

Modeling the Auditory System

This course covers the physiology of hearing from a model-oriented viewpoint. Topics include basilar membrane mechanics, models of cochlear transduction, stochastic process models of neural discharge, detection of theoretic approaches to relating physiological and psychological data, models of signal processing in central auditory nuclei, and nonlinear methods of characterizing neurons.

Prerequisites: 580.421-422 Physiological Foundations for Biomedical Engineering, or equivalent, 110.302 Differential Equations or 500.303 Applied Mathematics I or equivalent. Recommended: 520.214 Signals and Systems.

Wang, Young

Theoretical Neuroscience

This course covers theoretical methods for analyzing information encoding and representing function in neural systems, including models of single and multiple neural spike trains based on stochastic processes and information theory, detection and estimation of behaviorally relevant parameters from spike trains, system theoretic methods for analyzing sensory receptive fields, and network models of neural systems. Both theoretical methods and the properties of specific well-studied neural systems will be discussed.

Prerequisites: Introduction to Neuroscience (580.422 or equivalent), Probability (550.420 or equivalent), and Signals and Systems (520.214).

Kuo, Hunter

Ionic Channels in Excitable Membranes

Ionic channels are key signaling molecules that support electrical communication throughout the body. As such, these channels are a central focus of biomedical engineering as it relates to neuroscience, computational biology, biophysics, and drug discovery. This course introduces the engineering (stochastic and mathematical models) and molecular strategies (cloning and expression) used to understand the function of ionic channels. The course also surveys key papers that paint the current picture of how channels open (gating) and conduct ions (permeation). Biological implications of these properties are emphasized throughout. Finally, the course introduces how optical (fluorescence methods) and electrophysiological methods (patch clamp) now promise to revolutionize understanding of ionic channels. This course can be viewed as a valuable partner of Models of Physiological Processes in the Neuron (580.439). Advanced homework problems, paper presentations, and exam questions are added to the core curriculum.

Prerequisite: 580.421-422 Physiological Foundations for Biomedical Engineering or equivalent introductory biology. Recommended: differential equations, linear algebra, signals, and elementary probability.

Yue

Molecular and Cellular Systems

This course provides laboratory experience in cell imaging, motility, and excitation; stochastic simulation of ionic channel gating; and expression and biophysical characterization of cloned and native ionic channels. Students work on one or two projects from this set, under faculty supervision.

Tung, Yue

Cellular and Tissue Engineering

This is an advanced course on the latest research accomplishments on cellular and tissue engineering from three different interdisciplinary perspectives: 1) it summarizes the theoretical/experimental tools to investigate adhesion mechanisms and differentiated functions of cells attached on surfaces, 2) it examines the signal transduction and regulation of metabolic activity in mammalian cells due to physical (mechanical) forces, and 3) it highlights the mechanisms of cell motility and morphogenesis of anchored cells, and the mechanical properties of circulating cells.

Alevriadou, Leong, Kuo, Popel

Cell Mechanics and Motility

Fundamental to their function, cells generate and respond to mechanical forces. For example, whole muscle cells contract, but all cells must move chromosomes during cell division. This class will cover macroscopic mechanics of cells and their cytoskeleton, physical models of force generation, and molecular models derived from recent atomic structures of force-generating proteins. Clinical effects, such as cardiomyopathies where these processes are defective, and new molecular measurement technologies will also be discussed. An interdisciplinary approach spanning molecular biology, biochemistry, physics, and engineering will be emphasized.

Prerequisite: 580.421 Physiological Foundations for Biomedical Engineering or 020.305-306 Biochemistry and Cell Biology.

Kuo, Hunter
580.644 Neural Control of Movement and Vocalization

Generating a sound with our vocal system or moving our arm are both examples of a goal-directed movement. This is a course that compares the neural mechanisms responsible for acquisition of sensory information and generation of motion in these two motor behaviors. We will explore the brain systems that integrate 1) visual and somatosensory information in order to produce limb movements, and 2) auditory information in order to vocalize a sound. Emphasis is on experimental and theoretical results on the primate brain.

Prerequisite: A previous course in neuroscience.

Shadmehr, Wang

580.651 Introduction to Nonlinear Dynamics in Physiology

This course is designed for students who may be interested in applying the techniques of nonlinear dynamics and chaos to the analysis of physiological data. Topics covered will include fractals, strange attractors, bifurcations, state-space attractor reconstruction, Poincaré sections, dimension calculations, Lyapunov exponents, entropy, tests for determinism, nonlinear forecasting. Examples will be drawn from studies in cardiology, brain function, and the oculomotor system.

Prerequisite: Basic knowledge of signals and systems or permission of instructor. Limited enrollment.

Shelhamer

580.673 Advanced Seminar in Magnetic Resonance Imaging

In this course, students present an idea from the current literature to the class in two two-hour seminars and write a 10-20 page review article on the same topic. At the end of the course the class produces a book of these articles. Recent topics include rf and gradient coil design, flow measurements with MRI and contrast injection, sub-second MRI, methods for designing rf pulse shapes, diffusion measurements with MRI, absolute quantification of metabolites with MRS, and cardiac MRI. Future topics include adiabatic pulses in MRI and spectroscopy, motion artifact reduction, reconstruction strategies in reduced k-space MRI, thermal and mechanical requirements for MRI hardware, patient safety, induced currents from rapidly switching gradients, and rf heating.

Prerequisites: 580.472-473 Medical Imaging Systems and Magnetic Resonance in Medicine.

McVeigh

580.683 High Performance Computing in Biology

This course trains students in the use of high performance computing systems to solve problems in biological modeling. Lecture topics include 1) review of high performance computing in molecular modeling, biological fluid dynamics and transport, and cell network modeling; 2) efficient numerical methods for use on high performance computing systems; and 3) architecture and programming of the symmetric vector processor and the symmetric multiprocessing Silicon Graphics Power Challenge XL systems. Material is presented both in lectures and supervised laboratory sessions, during which students do interactive programming.

Prerequisites: Introductory programming, UNIX, differential equations, and linear algebra.

Winslow, Jafri

580.684 Experimental Foundations for Neural Models

This course familiarizes students with the experimental tools that are used to provide the biological data base for neural models. Projects are designed to teach single unit recording in sensory nerve, characterization of complex receptive fields, cellular or synaptic potential measurement, evoked potential techniques, and psychophysical measurement of sensory or motor function.

Prerequisites: An introductory course on the nervous system and permission of instructor.

Sachs, Staff
Applied Physics

The applied physicist bridges the gap between pure physics and engineering by conducting research on technical applications of natural phenomena. The hallmark of the applied physicist is the ability to conceive solutions by applying fundamental physical principles to complex problems.

The graduate program in applied physics leads to the master of science degree and is designed to develop professionals with broad capabilities appropriate for careers in technical research or advanced graduate study. Because of today’s changing technology, the program encompasses a wide range of topics, enabling the graduate to contribute solutions to a variety of physics problems. The faculty of the Applied Physics program is drawn predominantly from the staff of the Applied Physics Laboratory. Faculty interests and expertise include the following areas of specialization: ocean sciences, optics, solid state physics, materials, and space sciences. In their areas of research, the faculty members collaborate with colleagues from various divisions of the university as well as with scientists and engineers at other national and international laboratories.

Program Committee

Harry K. Charles Jr., Program Chair
Principal Professional Staff
Applied Physics Laboratory

Robert C. Cammarata
Professor, Materials Science and Engineering
Whiting School of Engineering

Richard F. Gasparovic
Principal Professional Staff
Applied Physics Laboratory

David L. Porter
Principal Professional Staff
Applied Physics Laboratory

John C. Sommerer
Principal Professional Staff
Applied Physics Laboratory

Joseph J. Suter
Principal Professional Staff
Applied Physics Laboratory

Michael E. Thomas
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program outlined in this catalog in the Admissions Requirements section. The applicant’s education also must have included mathematics through vector analysis and ordinary differential equations, general physics, modern physics, intermediate mechanics, and intermediate electricity and magnetism. The intermediate mechanics and intermediate electricity and magnetism requirements may be waived if the applicant has an exceptionally good grade point average and a strong background in mathematics.

Course Requirements

A total of 10 one-term courses must be completed within five years. The core curriculum requires four courses, with at least three courses selected from a group of six designed to provide a mastery of physical principles (mathematical physics, electromagnetics, quantum mechanics, classical mechanics, statistical mechanics and thermodynamics, and modern physics). The fourth core course can be selected from either the basic physical principal offerings above or from a group of three courses (Principles of Optics, Materials Science, and Physical System Modeling) that provide an introduction to the three primary curriculum concentration areas (geophysical and space sciences, photonics, and materials and condensed matter). Four of the remaining six courses must be selected from among the applied physics courses listed below, and may follow a particular concentration or contain a variety of applied physics courses. The two remaining courses may be selected from any of the offerings of the Whiting School of Engineering with the approval of the student’s advisor.

Four of the 10 courses required for the degree must be at the 700- or 800-level. With the advisor’s approval, an elective course may be substituted for a required course if the student has previously completed an equivalent graduate level course. Academic standards governing graduate study must be maintained.

Neither a thesis nor knowledge of a foreign language is required in this program.

I. Required Courses

Four one-term courses, with at least three selected from the first six courses below:

615.441 Mathematical Methods for Physics and Engineering
615.442 Electromagnetics
615.451 Statistical Mechanics and Thermodynamics
615.453 Classical Mechanics
615.454 Quantum Mechanics
615.465 Modern Physics
615.471 Principles of Optics
615.480 Materials Science
615.491 Physical System Modeling

II. Elective Courses

Six one-term courses, with at least four from Applied Physics:

A. Applied Physics Electives

615.444 Space Systems I
615.445 Space Systems II
615.462 Introduction to Astrophysics
615.748 Introduction to Relativity
615.753 Plasma Physics
615.755 Space Physics
615.761 Introduction to Oceanography
615.769 Physics of Remote Sensing
615.772 Cosmology
615.775 Physics of Climate

Photonics

615.751 Modern Optics
615.758 Modern Topics in Applied Optics
615.778 Computer Optical Design
615.780 Optical Detectors and Applications
615.781 Quantum Information Processing
615.782 Optics and MATLAB

Materials and Condensed Matter

615.460 Sensors and Sensor Systems for Homeland Security
615.481 Polymeric Materials
615.746 Nano-electronics: Physics and Devices
615.747 Sensors and Sensor Systems
615.757 Solid State Physics
615.760 Physics of Semiconductor Devices
615.768 Superlattices and Heterostructure Devices

Additional

615.448 Alternate Energy Technology
615.762 Applied Computational Electromagnetics
615.765 Chaos and Its Applications
615.779 Computational Physics
615.800 Applied Physics Project
615.802 Directed Studies in Applied Physics

B. General Electives

The remaining elective one-term courses may be selected from those listed above and/or from other master of science programs described in this catalog, subject to approval by the student’s advisor.

Photonics Option

Students can elect to concentrate their studies in photonics by completing a combination of courses from the Applied Physics and Electrical and Computer Engineering curricula. Applied physics students specializing in photonics must complete the three required courses listed below plus one additional course from the required electrical and computer engineering photonics core.

Photonics Option—Applied Physics Required Courses

615.441 Mathematical Methods for Physics and Engineering
615.454 Quantum Mechanics
615.471 Principles of Optics

Photonics Option—Electrical and Computer Engineering Core Courses

Select one:

- 525.413 Fourier Techniques in Optics
- 525.425 Laser Fundamentals
- 525.491 Fundamentals of Photonics

Photonics Option Electives in Applied Physics

Applied Physics offers several additional optics courses. Of the remaining six courses, four or more must be photonics courses selected from both the Applied Physics and Electrical and Computer Engineering curricula.

- 615.751 Modern Optics
- 615.758 Modern Topics in Applied Optics
- 615.778 Computer Optical Design
- 615.780 Optical Detectors and Applications
- 615.781 Quantum Information Processing
- 615.782 Optics and MATLAB

Materials and Condensed Matter Option

Students can elect to concentrate their studies in materials and condensed matter by completing a combination of courses from the applied physics, electrical engineering, and the materials science and engineering curricula. Applied physics students specializing in materials and condensed matter must complete three of the first six required courses listed above, plus 615.480 Materials Science.

Of the remaining six courses, four or more must be materials and condensed matter courses selected from the Applied Physics, Electrical and Computer Engineering, Materials Science and Engineering, and Chemical and Biomolecular Engineering curricula.

Note: 615.800 Applied Physics Project and 615.802 Directed Studies in Applied Physics can also be used to allow the student to pursue specialized interests in optics.
Applied Physics

Applied Physics offers the following materials-related courses:

- 615.460 Sensors and Sensor Systems for Homeland Security
- 615.481 Polymeric Materials
- 615.746 Nanoelectronics: Physics and Devices
- 615.747 Sensors and Sensor Systems
- 615.757 Solid State Physics
- 615.760 Physics of Semiconductor Devices
- 615.768 Superlattices and Heterostructure Devices

Note: 615.800 Applied Physics Project and 615.802 Directed Studies in Applied Physics also can be used to allow students to pursue specialized interests in materials and condensed matter.

Electrical and Computer Engineering

Electrical and Computer Engineering offers the following materials-related courses:

- 525.406 Electronic Materials
- 525.421 Introduction to Electronics and the Solid State I

Materials Science and Engineering

Materials Science and Engineering offers the following materials-related courses:

- 510.420 Topics in Biomaterials
- 510.604 Mechanical Properties of Materials
- 510.606 Chemical and Biological Properties of Materials
- 510.622 Micro- and Nano-Structured Materials and Devices
- 515.417 Nanomaterials

Chemical and Biomedical Engineering

Chemical and Biomedical Engineering offers the following materials-related courses:

- 540.427 Introduction to Polymer Science
- 540.439 Polymer Nanocomposites

Course Descriptions

Courses numbered 600-level and above are open only to those students who have been admitted for graduate study. Some courses may not be offered every year. Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.

615.441 Mathematical Methods for Physics and Engineering

This course covers a broad spectrum of mathematical techniques essential to the solution of advanced problems in physics and engineering. Topics include ordinary and partial differential equations, contour integration, tabulated integrals, saddle-point methods, linear vector spaces, boundary-value problems, eigenvalue problems, Green's functions, integral transforms, and special functions. Application of these topics to the solution of problems in physics and engineering is stressed.

Prerequisites: Vector analysis and ordinary differential equations (linear algebra and complex variables recommended).

Adelmann

615.442 Electromagnetics

Maxwell's equations are derived and applied to the study of topics including electrostatics, magnetostatics, propagation of electromagnetic waves in vacuum and matter, antennas, wave guides and cavities, microwave networks, electromagnetic waves in plasmas, and electric and magnetic properties of materials.

Prerequisites: Knowledge of vector analysis, partial differential equations, Fourier analysis, and intermediate electromagnetics.

Awadallah

615.444 Space Systems I

This course is intended for the physicist or engineer interested in the design of space experiments and space systems. The course presents the fundamental technical background, current state of the art, and example applications. Topics include systems engineering, space environment, astrodynamics, propulsion and launch vehicles, attitude determination and control, and space power systems. (This course may be taken for 700-level credit with additional requirement of a research paper.)

Prerequisite: An undergraduate degree in physics or engineering or the equivalent.

Staff

615.445 Space Systems II

This course examines the fundamentals necessary to design and develop space experiments and space systems. The course presents the technical background, current state of the art, and example applications. Topics include spacecraft thermal control, spacecraft configuration and structural design, space communications, command and telemetry systems, data processing and storage, reliability and quality assurance, and systems integration and testing. (This course may be taken for 700-level credit with the additional requirement of a research paper.)

Prerequisite: An undergraduate degree in physics or engineering or the equivalent. Although preferable, it is not necessary to have taken 615.444 or 615.744 Space Systems I.

Staff
615.448 Alternate Energy Technology
Energy availability and its cost are major concerns to every person. Fossil fuels in general and oil in particular are limited and the world’s reserves are depleting. The question asked by many is, Are there alternatives to the fossil fuel spiral (dwindling supplies and rising costs)? This course addresses these alternative energy sources. It focuses on the technology basis of these alternate energy methods, as well as the practicality and the potential for widespread use and economic effectiveness. Energy technologies to be considered include photovoltaics, solar thermal, wind energy, geothermal and thermal gradient sources, biomass and synthetic fuels, hydroelectric, wave and tidal energy, and nuclear. The associated methods of energy storage will also be discussed.
Prerequisite: An undergraduate degree in engineering, physics, or a related technical discipline.
Charles

615.451 Statistical Mechanics and Thermodynamics
After a brief historical review of thermodynamics and statistical mechanics, the basic principles of statistical mechanics are presented. The classical and quantum mechanical partition functions are discussed and are subsequently used to carry out derivations of the basic thermodynamic properties of several different systems. Topics discussed include Planck’s black body radiation derivation and the Einstein-Debye theories of the specific heats of solids. The importance of these topics in the development and confirmation of quantum mechanics is also examined. Other topics discussed include Fermi-Dirac and the Bose-Einstein statistics and the cosmic background radiation. The importance of comparisons between theory and data is stressed throughout.
Kundu

615.453 Classical Mechanics
This is an advanced course in classical mechanics that introduces techniques that are applicable to contemporary pure and applied research. The material covered provides a basis for a fundamental understanding of not only quantum and statistical mechanics but also nonlinear mechanical systems. Topics include the Lagrangian and Hamiltonian formulation of classical mechanics, Euler’s rigid body equations of motion, Hamilton-Jacobi theory, and canonical perturbation theory. These methods are applied to force-free motion of a rigid body, oscillations of systems of coupled particles, and central force motion including the Kepler problem and scattering in a Coulomb potential. Applications are emphasized through in-class examples and homework.
Prerequisites: Intermediate mechanics and 615.441 Mathematical Methods for Physics and Engineering.
Freund

615.454 Quantum Mechanics
This is a course in advanced modern physics that presents the basic concepts and mathematical formalism of quantum mechanics and introduces applications in atomic, molecular, and solid state physics. Topics include the mathematics of quantum mechanics, one-dimensional problems, central field problems, the interaction of electromagnetic radiation with atomic systems, the harmonic oscillator, angular momentum, and perturbation theory.
Prerequisite: 615.441 Mathematical Methods for Physics and Engineering or the equivalent.
Najmi

615.460 Sensors and Sensor Systems for Homeland Security
This course will present an overview of sensors and methods to protect populations against weapons of mass destruction. Using threat scenarios, the course will review common threat agents and methods of dissemination, and assess their effects on infrastructure. Next, the physics of detectors, including fundamental technologies and sampling interfaces, will be discussed. Sensor technologies for chemical, biological, nuclear, and radiological detection will be studied in detail. Evaluation methods will be presented for sensor selection based on application specific information, including sensor performance, environmental conditions, and operational impact. Additional studies will include methods for combining results from various sensors to increase detection confidence. As part of the course, students will be given a threat scenario and be required to select a sensor suite and networking information to design a hypothetical system considering the threat, sensor deployment cost, and logistics.
Lesho, Carlson

615.462 Introduction to Astrophysics
The techniques and fundamental theories of modern astrophysics are covered with special emphasis on the sun and stars. Topics include stellar structure, opacity of gases, radiative and convective transfer of energy, spectroscopic technique, and interpretation of stellar spectra. Stellar and solar magnetism and the role of magnetic fields in stellar atmospheres are also discussed.
Prerequisites: 615.442 Electromagnetics or the equivalent and 615.454 Quantum Mechanics.
Najmi

615.465 Modern Physics
This course covers a broad spectrum of topics related to the development of quantum and relativity theories. The understanding of modern physics and its applications is essential to the pursuit of advanced work in materials, optics, and other applied sciences. Topics include the special theory of relativity, particle-like properties of light, wavelike properties of particles, wave mechanics, atomic and nuclear phenomena, elementary particles, statistical physics, solid state, astrophysics, and general relativity.
Prerequisite: Undergraduate degree in physics or engineering.
Hawkins
615.471 **Principles of Optics**
This course teaches the student the fundamental principles of geometrical optics, optical instruments, radiometry, vision, and the measurement of color. It begins with a review of basic Gaussian optics to prepare the student for the more advanced concepts. From Gaussian optics the course leads the students through the principles of ray-trace analysis to develop a detailed understanding of the properties of an optical system. The causes and techniques for the correction of aberrations are studied. It covers the design principles of optical instruments, telescopes, microscopes, etc. The techniques of light measurement are covered in sessions on radiometry and photometry. The elevation of optical sensors and their performance limits are covered. The limitations imposed by the human eye are discussed, and the description and measurement of color are reviewed.

Prerequisite: Undergraduate degree in physics or engineering.

Fowler

615.480 **Materials Science**
This course covers a broad spectrum of materials-related topics designed to prepare the student for advanced study in the materials arena. Topics include atomic structure, atom and ionic behavior, defects, crystal mechanics, strength of materials, material properties, fracture mechanics and fatigue, phase diagrams and phase transformations, alloys, ceramics, polymers, and composites.

Prerequisite: Undergraduate degree in physics or engineering.

Edwards

615.481 **Polymeric Materials**
A comprehensive course in polymeric materials. Topics to include natural (biological) polymers, polymer synthesis, polymer morphology, inorganic polymers, ionomers, and polymeric materials applications. Composite materials containing polymers will also be discussed. A portion of the course will be devoted to the evaluation of polymer properties by physical methods.

Prerequisite: Undergraduate degree in physics or engineering.

Charles

615.491 **Physical System Modeling**
This course provides an introduction to the modeling of physical systems. Each field will be introduced in the context of the general principle illustrated by the solution of representative problems. Topics include fluids (viscous, inviscid, compressible, and incompressible), linear and nonlinear elasticity, heat conduction, deformable media, strain, plasticity, and electromagnetism.

Prerequisites: 615.441 Mathematical Methods for Physics and Engineering and a basic understanding of physics and mechanics.

Staff

615.492 **Systems Engineering Science**
This course is designed to reinforce the scientific and engineering foundations of the engineering design, development, testing, and deployment of complex systems. The subject ranges from project planning through key analytic and physical principles of reliability, economics, decision theory, and optimization. Important fundamental aspects of electrical, mechanical, and system packaging are presented along with their defining equations and approximations. Quality of both hardware and software is discussed along with the various aspects of technology transfer and the transition from prototype development to fielded systems.

Prerequisite: 615.441 Mathematical Methods for Physics and Engineering is recommended but not required.

Fowler

615.744 **Space Systems I**
This course is intended for the physicist or engineer interested in the design of space experiments and space systems. The course presents the fundamental technical background, current state of the art, and example applications. Topics include systems engineering, space environment, astrodynamics, propulsion and launch vehicles, attitude determination and control, and space power systems. This course requires the completion of a research paper. *(This course may be taken for 400-level credit without the requirement of a research paper.)*

Prerequisite: An undergraduate degree in physics or engineering or the equivalent.

Staff

615.745 **Space Systems II**
This course examines the fundamentals necessary to design and develop space experiments and space systems. The course presents the theoretical background, current state of the art, and examples of the disciplines essential to developing space instrumentation and systems. Experts in the field will cover the following topics: spacecraft attitude determination and control, space communications, satellite command and telemetry systems, satellite data processing and storage, and space systems integration and testing. This course requires the completion of a research paper. *(This course is also offered for 400-level credit and does not require completion of a research paper.)*

Prerequisite: An undergraduate degree in physics or engineering or the equivalent. Although preferable, it is not necessary to have taken 615.444 or 615.744 Space Systems I.

Staff

615.746 **Nanoelectronics: Physics and Devices**
This course provides an introduction to state-of-the-art and potential future electronics technologies. The first part of the course focuses on the physics of advanced silicon technology and on its scaling limits. The treatment includes a discussion of future electronics as projected to the year 2012 by the Semiconductor Industry Association’s National Technology Roadmap for Semiconductors (see sematech.org). This understanding of conventional technology then motivates the second part of the course which covers some of the “new” physics currently being explored for going “beyond the roadmap.” Topics range from the reasonably practical to the highly speculative and include tunneling transistors, single-flux quantum
logic, single-electronics, spin-based electronics, quantum computing, and perhaps even DNA-based computing. An overview is also given of the prospects for advances in fabrication technology that will largely determine the economic viability for any of these possible electronic futures.

Prerequisites: 625.454 Quantum Mechanics or equivalent; 615.760 Physics of Semiconductor Devices or equivalent.

615.747 Sensors and Sensor Systems

The primary objective of this course is to present recent advances made in the field of sensors. A broad overview includes radiation, biological, magnetic, fiber optic, and acoustic sensors. The course will examine basic sensor operation and the implementation of sensors in measurement systems. Other topics to be covered are physical principles of sensing, interface electronic circuits, and sensor characteristics. The focus will be on practical application and state-of-the-art developments.

Staff

Fitch

615.748 Introduction to Relativity

(formerly 615.772 Introduction to General Relativity and Cosmology)

After a brief review of the special theory of relativity, the mathematical tools of tensor calculus that are necessary for understanding the general theory of relativity will be developed. Relativistic perfect fluids and their stress-energy-momentum tensor will be defined and the Einstein’s field equations will be studied. Gravitational collapse will be introduced, and the Schwarzchild Black Hole solution will be discussed.

Najmi

615.751 Modern Optics

This course covers the fundamental principles of modern physical optics and contemporary optical systems. Topics include propagation of light, polarization, coherence, interference, diffraction, Fourier optics, absorption, scattering, dispersion, and image-quality analysis. Special emphasis is placed on the instrumentation and experimental techniques used in optical studies.

Prerequisite: 615.442 Electromagnetics or the equivalent completed or taken concurrently.

Boone

615.753 Plasma Physics

This course serves as an introduction to plasma phenomena relevant to energy generation by controlled thermonuclear fusion and space physics. Topics include motion of charged particles in electric and magnetic fields, dynamics of fully ionized plasma from both microscopic and macroscopic points of view, magnetohydrodynamics, equilibria, waves, instabilities, applications to fusion devices, ionospheric and space physics.

Prerequisite: 615.442 Electromagnetics or the equivalent.

Ukhorskiy

615.755 Space Physics

This course studies the solar-terrestrial space environment and its importance for utilization of space. Topics include the solar cycle and magnetic dynamo; the electrodynamics of the solar upper atmosphere responsible for the solar wind; and the solar wind interaction with unmagnetized and magnetized bodies that leads to the treatment of ionospheres, planetary bow shocks, comets, and magnetospheres. Practical issues include penetrating radiation and its effects on spacecraft and man in space, catastrophic discharge phenomena, dust and hypervelocity impacts, material degradation by sputtering and reactive ionospheric constituents, atmospheric heating and orbital drag effects on satellites, and magnetospheric storm disruptions of ground power distribution.

Prerequisite: 615.442 Electromagnetics or the equivalent.

Anderson

615.757 Solid State Physics

Students examine concepts and methods employed in condensed matter physics with applications in materials science, surface physics, and electronic devices. Topics include atomic and electronic structure of crystalline solids and their role in determining the elastic, transport, and magnetic properties of metals, semiconductors, and insulators. The effects of structural and chemical disorder on these properties are also discussed.

Charles

615.758 Modern Topics in Applied Optics

This course deals with optical system design involving state-of-the-art concepts. In particular, we will analyze the impact of nonlinearity in the propagation of laser beams and also the stochastic nature of light propagation in some commonly encountered situations such as atmospheric and under-sea light propagation. Nonlinear interactions of light and matter play a significant role in a large portion of modern optical systems. In most situations the optical system designer needs to eliminate or reduce nonlinearities and operate in a so-called linear regime. In other situations, the optical system takes advantage of the nonlinear interaction to produce significantly new operating conditions that are a key to the performance of modern optical systems. Similarly, taking into account the stochastic nature of light emission, detection, and propagation is important in the design and analyses of modern optical systems. The course reviews random processes involved in optical systems and applies statistical tools to identify the impact of such processes to the optical system performance.

Prerequisites: 615.442, Electromagnetics and 615.782, Optics and MATLAB. A knowledge of laser fundamentals would also be helpful.

Torrueillas

615.760 Physics of Semiconductor Devices

This course examines the physical principles underlying semiconductor device operation and the application of these
principles to specific devices. Emphasis is placed on understanding device operation, rather than on circuit properties. Topics include elementary excitations in semiconductors such as phonons, photons, conduction electrons, and holes; charge and heat transport; carrier trapping and recombination; effects of high doping; contacts; the pn junction; the junction transistor; surface effects; the MIS diode; and the MOSFET.

Prerequisites: Mathematics including differential equations and linear operators. Familiarity with quantum mechanics would be helpful.

Charles

615.761 Introduction to Oceanography
This course covers the physical concepts and mathematics of the exciting field of oceanography and can be taken as an elective. It is designed for the student who wants to learn more about oceanography. Topics range from fundamental small waves to planetary scale ocean currents. There will be a strong emphasis on understanding the basic ocean processes. Initial development gives a description of how the ocean system works and the basic governing equations. Additional subjects include boundary layers, flow around objects (seamounts), waves, tides, Ekman flow, and the Gulf Stream. Also studied will be the ocean processes that impact our climate such as El Niño and the Thermohaline Conveyor Belt.

Prerequisites: Mathematics through Calculus.

Porter

615.762 Applied Computational Electromagnetics
This course introduces the numerical methods and computer tools required for the practical applications of the electromagnetic concepts covered in 615.442 to the daily life engineering problems. It covers the methods of calculating electromagnetic scattering from complex air and sea targets (aircraft, missiles, ships, etc.), taking into account the effects of the intervening atmosphere and natural surfaces such as the sea surface and terrain. These methods have direct applications in the areas of radar imaging, communications, and remote sensing. Methods for modeling and calculating long-distance propagation over terrain and in urban areas, which find application in the areas of radar imaging, radio and TV broadcasting, and cellular communications, are also discussed. The numerical toolkit built in this course includes the method of moments, the finite difference frequency and time domain methods, the finite element method, marching numerical methods, iterative methods, and the shooting and bouncing ray method.

Prerequisites: Knowledge of vector analysis, partial differential equations, Fourier analysis, basic electromagnetics, and a scientific computer language.

Awadallah

615.765 Chaos and Its Applications
The course will introduce the students to the basic concepts of nonlinear physics, dynamical system theory, and chaos. These concepts will be studied by examining the behavior of fundamental model systems, which are modeled by ordinary differential equations, and, sometimes, discrete maps. Examples will be drawn from physics, chemistry, and engineering. Some mathematical theory is necessary to develop the material. Practice through concrete examples will help to develop the geometric intuition necessary for work on nonlinear systems. Students conduct numerical experiments using provided software, which allows for interactive learning. Access to Whiting School computers is provided for those without appropriate personal computers.

Prerequisites: Mathematics through ordinary differential equations. Familiarity with MATLAB is helpful. Consult instructor for more information.

Liakos

615.768 Superlattices and Heterostructure Devices
In this course, students are introduced to the physics and technology of superlattices and heterostructure devices (i.e., semiconductor devices whose chemical composition is varied in order to optimize electronic and/or optical performance— “band-gap engineering”). Among the devices covered in the course are modulation-doped FETs, heterojunction bipolar transistors, and various quantum well devices, such as heterostructure light sources and detectors. Topics include energy band diagrams, electronic properties of heterojunctons, intervalley and real-space transfer, electron states in quantum wells, excitons, tunneling, and transport theory. Student projects involving the use of commercial device simulation software will allow direct exploration of various devices as well as provide experience with a widely used design tool.

Prerequisites: 615.454 Quantum Mechanics or the equivalent. Exposure to material covered in 615.760 Physics of Semiconductor Devices and 615.757 Solid State Physics or their equivalent is desirable but not required. No computer experience is necessary.

Ancona

615.769 Physics of Remote Sensing
This course exposes the student to the physical principles underlying satellite observations of the Earth by optical, infrared, and microwave sensors and techniques for extracting geophysical information from remote sensor observations. Topics will include spacecraft orbit considerations, fundamental concepts of radiometry, electromagnetic wave interactions with land and ocean surfaces and the Earth’s atmosphere, radiative transfer and atmospheric effects, and overviews of some important satellite sensors and observations. Examples from selected sensors will be used to illustrate the information extraction process, and applications of the data for environmental monitoring, oceanography, meteorology, and climate studies.

Gasparovic

615.772 Cosmology
This course begins with a brief review of tensor calculus and general relativity, cosmological models, and theoretical and observational parameters that determine the fate of the uni-
verse. Basics of quantum fields necessary for an understanding of the Standard Model and the early universe will be presented. Hubble expansion, the cosmic microwave background radiation (CMBR), and recent theories of the presence of anisotropy in the CMBR and their implications will be studied. The horizon problem and the role of the inflationary scenario in the early universe will be thoroughly explored.

Prerequisite: 615.748 Introduction to Relativity.

Najmi

615.775 Physics of Climate

To understand the forces that cause global climate variability, we must understand the natural forces that drive our weather and our oceans. This course covers the fundamental science underlying the nature of the Earth’s atmosphere and its oceans. This includes development of the basic equations for the atmosphere and ocean, the global radiation balance, description of oceanic and atmospheric processes, and their interactions and variability. Also included will be a description of observational systems used for climate studies and monitoring and fundamentals underlying global circulation and climate prediction models.

Prerequisites: Undergraduate degree in physics or engineering or equivalent with strong background in mathematics through the calculus level.

Winstead and Porter

615.778 Computer Optical Design

In this course students learn to use optical ray-trace analysis to design and analyze optical systems. Students use a full-function optical ray-trace program on personal computers to analyze designs—beginning with simple lenses for familiarization with the software, to more complicated wide-angle and zoom lenses, and finally to three-dimensional systems such as spectrographs. Emphasis is placed on understanding the optical concepts involved in the designs while developing the ability to use the software. Upon completion of the course, students are capable of independently pursuing their own optical designs. Assignments require the use of a Pentium PC running Windows with 16Mb of RAM, and 12Mb of free hard disk space.

Prerequisite: 615.471 Principles of Optics.

Edwards and Ohl

615.779 Computational Physics

Computer modeling and simulation are becoming increasingly important in applied physics and engineering, with engineers and researchers typically using preexisting, highly sophisticated, graphically oriented software to solve their real-world problems. To succeed in this environment one need not be able to write such state-of-the-art software, but it is vital that one be a smart consumer. With this in mind, this course provides the student with a firm grounding in the fundamentals of numerical applied physics/engineering. Through an interesting mix of principles, practical algorithms, and hands-on computational experience, the student learns the basic concepts that underlie the practical simulation software used in everything from weather prediction to electronic device design. Both ordinary and partial differential equations are discussed, and the topics include convergence, stability, numerical error, ill-conditioning, gridding, finite differences, iterative techniques, and stochastic methods. The text for the course was written by the instructor and is printed and sold by the bookstore at cost. This text also exists in an experimental interactive form (Mathcad) which is not required for the course but which will be provided for free to interested students.

Prerequisites: Familiarity with differential equations is required and prior exposure to computer programming is recommended.

Ancona

615.780 Optical Detectors and Applications

This course examines the physics of detection of incoherent electromagnetic radiation from the infrared to the soft x-ray regions. Brief descriptions of the fundamental mechanisms of device operation are given. Typical source characteristics are mentioned to clarify detection requirements. Descriptions of non-spatially resolving detectors based on photoemission and photo-excitation follow, including background physics, noise, and sensitivity. Practical devices and practical operational constraints are described. Description of scanning formats leads into the description of spatially revolving systems (e.g., staring arrays). Main emphasis is on charge-coupled devices and photo-emissive multiplier tubes such as the image intensifier. Selection of optimum detectors and integration into complete system designs are discussed. Applications in space-based and terrestrial remote sensing are discussed.

Prerequisites: 615.471 Principles of Optics desired; undergraduate-level studies in solid-state physics and mathematics—preferably statistics—necessary.

Darlington

615.781 Quantum Information Processing

This course provides an introduction to the rapidly developing field of quantum information processing. In addition to studying fundamental concepts such as two-state systems, measurements uncertainty, quantum entanglement, and non-locality, emphasis will be placed on specific quantum information protocols. Several applications of this technology will be explored, including cryptography, teleportation, dense coding, computing, and error correction. The quantum mechanics of polarized light will be used to provide a physical context to the discussion and will be supplemented with computer exercises. Current research on implementations of these ideas will also be discussed.

Prerequisites: 615.454 Quantum Mechanics; familiarity with Mathematica helpful.

Jacobs
615.782 Optics and MATLAB
This course provides hands-on experience with MATLAB by performing weekly computer “labs” revolving around optics. Each lab will explore a new topic in the optics field, while simultaneously providing experience in MATLAB. The goal is to bridge the gap between theoretical concepts and real-world applications or models. Topics include an introduction to MATLAB, Fourier theory and E&M propagation, image segmentation and pattern recognition, statistical optics, geometrical optics, interference and wave optics, holography and computer generated holography, polarization, speckle phenomenon, and laser theory. Students are expected to complete weekly exercises in MATLAB and a semester project which will allow students to investigate a particular topic of interest not specifically covered in the course.

Prerequisites: No prior experience with MATLAB is required. While a background in optics is helpful, it is not required.

Torruellus

615.800 Applied Physics Project
This course is an individually tailored, supervised project that offers the student research experience through work on a special problem related to his or her field of interest. The research problem can be addressed experimentally or analytically, and a written report is produced.

Prerequisites: It is recommended that all required applied physics courses be completed. The applied physics project proposal form (available from the student’s advisor) must be approved prior to registration.

Note: Only open to candidates in the Master of Science in Applied Physics program.

Charles

615.802 Directed Studies in Applied Physics
In this course qualified students are permitted to investigate possible research fields or to pursue problems of interest through reading or non-laboratory study under the direction of faculty members.

Prerequisite: The directed studies program proposal form (available from the student’s advisor) must be completed and approved prior to registration.

Note: Open only to candidates in the Master of Science in Applied Physics program.

Charles
Bioinformatics

Joint offering of the Zanvyl Krieger School of Arts and Sciences and the Whiting School of Engineering

Bioinformatics is proving to be a necessary tool for biologists, medical researchers, and drug designers in understanding genes, gene expression, SNPs, proteins, pathways, and in studying disease. It is also playing an increasingly important role in identifying, characterizing, and selecting potential lead compounds and in understanding target molecules for drug development and production. As the biotechnology industry expands, a growing number of discoveries will move out of research laboratories and into commercial production. The explosion of sequence data from the human genome project and other large scale and small scale sequencing projects calls for skilled professionals who can develop and use sophisticated computer applications to unlock the information within the genetic code, with the ultimate goal of delivering life saving therapies.

To meet the demand for skilled bioinformatics professionals, the Whiting School of Engineering’s Engineering for Professionals program and the Zanvyl Krieger School of Arts and Sciences’ Advanced Academic Programs have joined forces to offer a degree in the new and rapidly evolving discipline that combines computer science and molecular biology. The bioinformatics degree draws on the faculty and resources from within each school to provide professionals with in-depth knowledge and technical skills in computational biology, preparing students for careers in bioinformatics and computational biology.

Graduates with the M.S. in Bioinformatics will have the educational foundation necessary to interpret complex biological information, perform analysis of sequence data using sophisticated bioinformatics software, and program software when needed. The degree covers not only the theoretical aspects of the field, but also the practical side of bioinformatics, through contact with Hopkins faculty actively developing these technologies.

Program Committee

The program committee oversees the admissions, policy and operations of the joint M.S. in Bioinformatics. It consists of:

Richard McCarty, Co-chair
William D. Gill Professor of Biology Emeritus, Dean Emeritus, and Chair, Biotechnology
Zanvyl Krieger School of Arts and Sciences

Ralph Semmel, Co-chair
Computer Science Program, Whiting School of Engineering, Engineering for Professionals

Edwin Addison, EP Coordinator
Computer Science Program, Whiting School of Engineering, Engineering for Professionals

Kristina Obom, KSAS Coordinator
Senior Associate Program Chair, Biotechnology, Advanced Academic Programs, Zanvyl Krieger School of Arts and Sciences

Patrick Cummings, Senior Associate Program Chair
Biotechnology, Advanced Academic Programs, Zanvyl Krieger School of Arts and Sciences

Eleanor Boyle Chlan
Computer Science Program, Whiting School of Engineering, Engineering for Professionals

Admissions Requirement

Students entering this program must have completed a four-year bachelor’s degree in biological sciences or engineering, or a graduate degree in an appropriate field, with the following prerequisites required for admission to the program: two semesters of undergraduate Organic Chemistry or 410.302 Bio-Organic Chemistry; 410.601 Advanced Biochemistry; 605.201 Introduction to Programming Using Java, C++, or C; 605.202 Data Structures; an undergraduate or graduate course in Probability and Statistics; and Calculus. All the prerequisites can be taken in the existing Master of Science in Computer Science or in the Master of Science in Biotechnology program. Applicants must have a GPA of 3.0 or higher on a 4.0 scale in the latter half of their undergraduate or graduate studies. Applicants with less than the required GPA may be admitted as provisional students. Applicants with a degree from a country other than the U.S. must provide credential evaluations and a TOEFL.

Note: This program is offered jointly by the Zanvyl Krieger School of Arts and Sciences (KSAS) and the Whiting School of Engineering. However, the administration is handled by KSAS and applications for admission to the Master of Science in Bioinformatics must be submitted directly to KSAS (www.bioinformatics.jhu.edu).

Program Structure

The joint MS degree will require certain prerequisites and a total of 11 courses. Students may elect to complete additional work and earn an M.S. in Bioinformatics with thesis. The course offerings are listed below.

Prerequisites

- Two semesters of Organic Chemistry (or 410.302 Bio-Organic Chemistry)
- One semester of Advanced Biochemistry (or 410.601 Advanced Biochemistry)
- Introduction to Programming Using Java, C++ or C (or 605.201 Introduction to Programming Using Java)
- Data Structures (or 605.202 Data Structures)
- One course in Probability and Statistics or (410.645 Biostatistics)
- Calculus
Core Courses—Five Required
- 605.421 Foundations of Algorithms
- 410.602 Molecular Biology
- 410.610 Gene Organization and Expression

Select Either:
- 605.441 Principles of Database Systems or
- 410.634 Practical Computer Concepts for Bioinformatics

Select Either:
- 605.452 Biological Databases and Database Tools or
- 410.633 Introduction to Bioinformatics

Concentration Courses—Choose Four

Students may choose any four of these courses. If a student chooses three courses in one concentration area, the student will also be recognized as having completed a “concentration” in that specific area. Concentrating on one area is not required.

Protein Bioinformatics
- 605.451 Principles of Computational Biology
- 605.751 Computational Aspects of Molecular Structure
- 410.639 Protein Bioinformatics
- 410.661 Methods in Proteomics

Genomics and Sequencing
- 605.453 Computational Genomics
- 605.754 Analysis of Gene Expression and High-Content Biological Data
- 410.635 Bioinformatics: Tools for Genome Analysis
- 410.640 Phylogenetics and Comparative Genomics
- 410.666 Genomic Sequencing and Analysis
- 410.671 Microarrays and Analysis
- 410.754 Comparative Microbial Genomics: From Sequence to Significance

Computational Biology
- 605.443 The Semantic Web
- 605.451 Principles of Computational Biology
- 605.456 Computational Drug Discovery and Development
- 605.751 Computational Aspects of Molecular Structure
- 410.640 Phylogenetics and Comparative Genomics
- 410.698 Bioperl
- 410.712 Advanced Practical Computer Concepts for Bioinformatics

Systems Biology
- 605.456 Computational Drug Discovery and Development

Electives—Choose Two

Choose one elective from the approved list of computer science courses and one from the approved list of biotechnology courses.

Approved Computer Science Elective List
- 605.401 Foundations of Software Engineering
- 605.462 Data Visualization
- 605.481 Distributed Development on the World Wide Web
- 605.484 Collaborative Development with Ruby on Rails
- 605.701 Software Systems Engineering
- 605.741 Distributed Database Systems
- 605.746 Machine Learning
- 605.747 Evolutionary Computation
- 605.759 Independent Project in Bioinformatics
- 605.782 Web Application Development with Servlets and JavaServer Pages (JSP)
- 605.787 Rich Internet Applications with Ajax
- 635.444 XML: Technology and Applications

Approved Biotechnology Elective List
- 410.603 Advanced Cell Biology I
- 410.604 Advanced Cell Biology II
- 410.612 Human Molecular Genetics
- 410.613 Principles of Immunology
- 410.615 Microbiology
- 410.616 Virology
- 410.622 Molecular Basis of Pharmacology
- 410.629 Genes and Disease
- 410.630 Gene Therapy
- 410.632 Emerging Infectious Diseases
- 410.638 Cancer Biology
- 410.641 Clinical and Molecular Diagnostics
- 410.648 Clinical Trial Design & Statistical Analysis
- 410.656 Recombinant DNA Laboratory
- 410.800 Independent Research in Biotechnology

MS in Bioinformatics with Thesis Option

Students interested in pursuing the M.S. in Bioinformatics with the thesis are required to take 12 courses and should consult with the program advisor. The thesis is a two semester...
Students should take the following courses in consecutive semesters:

- 410.800 Independent Research in Biotechnology
- 410.801 Biotechnology Thesis

Online Options

Effective Fall 2006, the Master of Science in Bioinformatics is available as a fully online degree. Not all courses are available online, but a complete program is offered. All bioinformatics students may take advantage of the online offerings as it suits their needs.

Courses from Other JHU Schools

There are various courses at Homewood (Electrical Engineering and Biomedical Engineering departments) and at the Johns Hopkins School of Medicine or Bloomberg School of Public Health, related to bioinformatics, that are also relevant. Upon special request, students may take one or two of these courses as part of their program in consultation with their advisor, provided that the students meet the prerequisites, obtain instructor permission and the advisor approves the course as a suitable substitution for one of the requirements above. The course descriptions and offerings are provided on the websites of the respective schools.

Tuition

Tuition for the courses in the joint degree varies by course and school of origin and are posted in the course schedule each semester.

Facilities

The program uses facilities on the Homewood and Montgomery County campuses. These campuses contain numerous modern classrooms, teaching support equipment, computer laboratories, lounges, and food service, and are supported by appropriate staff. Both locations can accommodate additional courses and students. Courses are sometimes offered at APL. An increasing number of courses are being offered online.

Course Descriptions

410.302 Bio-Organic Chemistry

This course provides a foundation in structural organic chemistry, acid base chemistry, chemical thermodynamics, and reaction mechanisms. Subjects include Lewis structures, atomic and hybridized orbitals, stereochemistry, inter- and intramolecular forces of attraction, nucleophilic reaction mechanisms, functional groups, and the organic chemistry of biological molecules. *(Not for graduate credit)*

Prerequisites: Two semesters of college chemistry.

410.601 Advanced Biochemistry

This course explores the rules of essential biological molecules including proteins, lipids, and carbohydrates, with an introduction to nucleic acids. It provides a systematic and methodical application of general and organic chemistry principles. Students examine the structure of proteins, their function, the methodologies for the purification and characterization of proteins, and the alteration of protein function through protein engineering. Enzymes and their kinetics and mechanisms are covered in detail. This course provides the linkage between the inanimate world of chemistry and the living world of biology.

410.602 Molecular Biology

This course provides a comprehensive overview of the key concepts in molecular biology. Topics include nucleic acid structure and function, DNA replication, transcription, translation, chromosome structure and remodeling and regulation of gene expression in prokaryotes and eukaryotes. Extended topics include methods in recombinant DNA technology, microarrays, and microRNA.

Prerequisite: 410.601 Advanced Biochemistry.

410.603 Advanced Cell Biology I

This course covers cell organization and subcellular structure. Students examine the evolution of the cell, chromosome and plasma membrane structures and behaviors, mechanics of cell division, sites of macromolecular synthesis and processing, transport across cell membranes, cell dynamics, organelle biogenesis, and cell specialization. Students also are introduced to the experimental techniques used in cell biology to study cell growth, manipulation, and evaluation.

410.604 Advanced Cell Biology II

This course is a continuation of 410.603 Advanced Cell Biology I and further explores cell organization and subcellular structure. Students examine cell-to-cell signaling that involves hormones and receptors, signal transduction pathways, second messenger molecules, cell adhesion, extracellular matrix, cell cycle, programmed cell death, methylation of DNA and modification of chromatic structure, and mechanisms of the cell. The involvement of abnormalities in signal transduction pathways to oncogenesis and other disease states will be stressed. Where appropriate, current drugs and developing techniques will be examined in the context of relevant pathological states.

410.610 Gene Organization and Expression

Students use genetic analysis and molecular biology techniques to investigate chromosome organization, chromatin structure, function genomics, and mechanisms of differential gene expression. Other topics include DNA methylation, silencers, enhancers, genomic imprinting, and microarray analyses.

Ma
Bioinformatics

410.612 Human Molecular Genetics

In this course students learn to use the tools of modern genomics to elucidate phenotypic variation within populations. The course uses human disease (from simple Mendelian disorders to common complex disorders) to exemplify the types of studies and tools which can be used to characterize cellular pathophysiology as well as to provide genetic diagnostics and therapies. Students become facile with linkage analysis, cancer genetics, microarray analysis (oligo and cDNA arrays), gene therapy, SNP studies, imprinting, disequilibrium mapping and ethical dilemmas associated with the Human Genome Project.

Staff

410.613 Principles of Immunology

This course covers molecular and cellular immunology, including antigen and antibody structure and function, effector mechanisms, complement, major histocompatibility complexes, B- and T-cell receptors, antibody formation and immunity, cytotoxic responses, and regulation of the immune response. Students are also introduced to the applied aspects of immunology which include immunoassay design, various formats and detection methods, and flow cytometry. Special topics include organ transplantation, immunosuppression, immunotherapy, autoimmunity, and DNA vaccination.

Staff

410.615 Microbiology

This course is an overview of microorganisms important in clinical diseases and biotechnology. Students are introduced to the general concepts concerning the morphology, genetics, and reproduction of these microbial agents. Lectures focus on individual organisms with emphasis on infectious diseases, biotechnology applications, molecular and biochemical characteristics, and molecular and serological identification methods. Students will also discuss the impact biotechnology, and particularly genomics, will have on the development of antibiotics and vaccines as treatment and preventive measures.

Staff

410.616 Virology

This course covers the advanced study of viruses with regard to the basic, biochemical, molecular, epidemiological, clinical, and biotechnological aspects of animal viruses primarily and bacteriophage, plant viruses, viroids, prions, and unconventional agents secondarily. Specific areas of virology including viral structure and assembly, viral replication, viral recombination and evolution, virus-host interactions, viral transformation, gene therapy, antiviral drugs, and vaccines are presented. The major animal virus families are discussed individually with respect to classification, genomic structure, virion structure, virus cycle, pathogenesis, clinical features, epidemiology, immunity, and control. The viral vectors and their applications in biotechnology are discussed.

Staff

410.622 Molecular Basis of Pharmacology

This course begins by reviewing receptor binding and enzyme kinetics. Various cellular receptors and their physiology are discussed as well as the pharmacological agents used to define and affect the receptor’s function. Students study the pharmacology of cell surface receptors and intracellular receptors. Also considered are the drugs that affect enzymes.

Staff

410.629 Genes and Disease

Because of recent advances, powerful diagnostic tests now detect genetic diseases, and there is promise of gene replacement therapy. In this course students cover general genetic principles, DNA tools for genetic analysis, cytogenetics, gene mapping, the molecular basis of genetic diseases, animal models, immunogenetics, genetics of development, genetics of cancer, and treatment of genetic diseases. Molecular methods of analysis are emphasized.

Staff

410.630 Gene Therapy

Students are introduced to gene transfer, its technical evolution, and its testing through clinical studies. Gene therapy holds promise for both genetic diseases and acquired diseases such as cancer and AIDS. The health, safety, and ethical issues surrounding gene therapy are discussed, together with the review and oversight systems established to regulate this therapy. Students also consider how industry is developing these techniques, both in new start-up companies as well as in established biotechnology and pharmaceutical companies. An overview of proprietary and patent issues in gene therapy is part of the course.

Staff

410.632 Emerging Infectious Diseases

This course focuses on emerging infectious diseases from many different perspectives. The maladies addressed range from diseases that have reappeared in altered genetic forms such as the influenza virus and the West Nile virus to the lethal hemorrhagic fever caused by the Ebola virus. Also discussed is the threat of recombinant and ancient infectious agents such as Bacillus anthracis, causative agent of anthrax, which can be used in biological warfare weapons. Opinions from noted scientists and leaders concerning emerging diseases and the prospects for battling them successfully provide scientific and social perspective.

Staff

410.633 Introduction to Bioinformatics

Retrieval and analysis of electronic information are essential in today’s research environment. This course explores the theory and practice of biological database searching and analysis. In particular, students are introduced to integrated systems where a variety of data sources are connected through World Wide Web access. Information retrieval and interpretations
are discussed, and many practical examples in a computer laboratory setting enable students to improve their data mining skills. Methods included in the course are searching the biomedical literature, sequence homology searching and multiple alignment, protein sequence motif analysis, and several genome analytical methods. Classes are held in a computer laboratory. Acquaintance with computers is required.

410.634 Practical Computer Concepts for Bioinformatics

This course introduces students with a background in the life sciences to the basic computing concepts of the UNIX operating system, relational databases, structured programming, object-oriented programming, and the Internet. Included is an introduction to SQL and the Perl scripting language. The course emphasizes relevance to molecular biology and bioinformatics. It is intended for students with no computer programming background, but with a solid knowledge of molecular biology.

410.635 Bioinformatics: Tools for Genome Analysis

Several large-scale DNA sequencing efforts have resulted in mega-base amounts of DNA sequences being deposited in public databases. As such, the sequences are of less use than those sequences that are fully annotated. To assign annotations such as exon boundaries, repeat regions, and other biologically relevant information accurately in the feature tables of these sequences requires a significant amount of human intervention. This course instructs students on computer analytical methods for gene identification, promoter analysis, and introductory gene expression analysis using software methods. Additionally, students are introduced to comparative genomics and proteomic analysis methods. Students will become proficient in annotating large genomic DNA sequences. Students complete two large sequence analysis projects during the course.

410.638 Cancer Biology

This course provides students with knowledge of the fundamental principles of the molecular and cellular biology of cancer cells. Lectures and demonstrations explain the role of growth factors, oncogenes, tumor suppressor genes, angiogenesis, and signal transduction mechanisms in tumor formation. Discussion of aspects of cancer epidemiology, prevention, and principles of drug action in cancer management is part of the course.

410.639 Protein Bioinformatics

Because the gap between the number of protein sequences and the number of protein crystal structures continues to expand, protein structural predictions are increasingly more important. This course provides a working knowledge of various computer-based tools available for predicting the structure and function of proteins. Topics include protein database searching, protein physicochemical properties, secondary structure prediction and statistical verification. Also covered are graphic visualization of the different types of three-dimensional (3-D) folds and predicting 3-D structures by homology. Computer laboratories complement material presented in lectures.

410.640 Phylogenetics and Comparative Genomics

This course will provide a practical, hands-on introduction to the study of phylogenetics and comparative genomics. Theoretical background on molecular evolution will be provided only as needed to inform the comparative analysis of genomic data. The emphasis of the course will be placed squarely on the understanding and use of a variety of computational tools designed to extract meaningful biological information from molecular sequences. Lectures will provide further information on the conceptual essence of the algorithms that underlie various sequence analysis tools and the rationale behind their use. Only programs that are freely available, as either downloadable executables or as web servers, will be used in this course. Students will be encouraged to use the programs and approaches introduced in the course to address questions relevant to their own work.

410.641 Clinical and Molecular Diagnostics

This course covers basic concepts and practical applications of modern laboratory diagnostic techniques. Topics include the principles of testing methodology, quality assurance and the application of molecular methods to the clinical and research laboratory. The test methods to be covered include nucleic acid based methods such as hybridization, amplification, and sequencing; non-nucleic acid methods such as HPLC, GLC, and protein analysis; and technologies such as PFGE, ribotyping, RFLP, and microarrays. In addition to the test procedures, students are exposed to aspects of statistics, quality control, regulatory issues, and applications of these methods to the diagnosis and prognosis of human disease.

410.645 Biostatistics

This course introduces statistical concepts and analytical methods as applied to data encountered in biotechnology and biomedical sciences. It emphasizes the basic concepts of experimental design, quantitative analysis of data, and statistical inferences. Topics include probability theory and distributions; population parameters and their sample estimates; descriptive statistics for central tendency and dispersion; hypothesis testing and confidence intervals for means, variances, and proportions; the chi-square statistic; categorical data analysis; linear correlation and regression model; analysis of variance; and nonparametric methods. The course provides students a foundation to evaluate information critically to support research objectives and product claims and a better
understanding of statistical design of experimental trials for biological products/devices.

Prerequisites: Basic mathematics (algebra); scientific calculator.

Staff

410.648 Clinical Trial Design & Statistical Analysis
Through a case study approach, this course will cover the basic design issues of clinical trials. The design of specific trials will be studied to illustrate the major issues in the design of these studies, such as end point definition, control group selection, and eligibility criteria. The course also covers the analysis of these studies, including approaches that are central to clinical trials, such as stratified analysis, adjustment factors, and “intention-to-treat” analyses. The analytical techniques to be covered will include the analysis of correlated data (i.e., clustered data, longitudinal data), survival analysis using the proportional hazards (Cox) regression model, and linear models. The course will also cover various aspects of statistical computing, including organizing data, data management, and performing analyses using computer software. The ethical reporting of clinical trial results will also be covered with reference to the medical research literature.

Staff

410.656 Recombinant DNA Laboratory
This laboratory course introduces students to methods for manipulating and analyzing nucleic acids. Students gain extensive hands-on experience with plasmid purification, restriction mapping, ligations, bacterial transformations, gel electrophoresis, as well as applications of the polymerase chain reaction. This course is not recommended for students with substantial experience in these methodologies.

Prerequisites: 410.601 Advanced Biochemistry and 410.602 Molecular Biology.

Staff

410.661 Methods in Proteomics
This course covers the analytical methods used to separate and characterize pharmaceutical compounds (predominantly proteins) derived through biotechnology. While emphasis is placed on the general principles and applicability of the methods, current protocols are discussed, and problem sets representing realistic developmental challenges are assigned. Topics include chromatography (HPLC, SEC, IEC), electrophoretic techniques (2-D gel electrophoresis), spectroscopic methods (UV/Vis, Fluorescence, CD), analytical ultra-centrifugation, microarrays, mass spectroscopy, amino acid analysis, sequencing, and methods to measure protein-protein interactions.

Staff

410.666 Genomic Sequencing and Analysis
The completion of the human genome sequence is just the latest achievement in genome sequencing. Armed with the complete genome sequence, scientists need to identify the genes encoded within, to assign functions to the genes, and to put these into functional and metabolic pathways. This course will provide an overview of the laboratory and computational techniques beginning with genome sequencing and annotation, extending into bioinformatics analysis and comparative genomics and including functional genomics.

Staff

410.671 Microarrays and Analysis
This course will focus on the analysis and visualization of microarray data. The general aim is to introduce students to the various techniques and issues involved with analyzing multivariate expression data. Additionally, students will visualize the results in modern statistical scripting software. Topics include detecting and attributing sources of data variability, determining differentially expressed genes with relevant statistical tests and controlling for false positive discovery (multiple test corrections, permutations, etc.). An introduction to linear and nonlinear dimension reduction methods (PCA, PLS, isometric feature mapping, etc.) and an introduction to common pattern recognition (clustering), classification, and discrimination techniques will be included. Assignments and concepts will make use of publicly available Affymetrix and cDNA microarray data sets. Examples will mostly be demonstrated in S-plus and R (publicly available) code, with some in SAS. Free demo software tools such as Minitab, Spotfire, TreeView, Expression Profiler, and web UIs will also be utilized.

Staff

410.698 Bioperl
This course builds on the Perl concepts taught in 410.634 Practical Computer Concepts for Bioinformatics. Perl has emerged as the language of choice for the manipulation of bioinformatics data. Bioperl, a set of object-oriented modules that implements common bioinformatics tasks, has been developed to aid biologists in sequence analysis. The course will include an overview of the principal features of Bioperl and give students extensive opportunity to use Perl and the tools of Bioperl to solve problems in molecular biology sequence analysis.

Staff

410.712 Advanced Practical Computer Concepts for Bioinformatics
This intermediate- to advanced-level course, intended as a follow-on to 410.634 Practical Computer Concepts for Bioinformatics (a prerequisite for this new class), will integrate and expand on the concepts from that introductory class to allow students to create working, web-based bioinformatics applications in a project-based course format. After a review of the concepts covered in 410.634, students will learn how to create functional web applications on a UNIX system, using Perl and CGI to create forms that can be acted upon, and using the Perl DBI module to interface with MySQL relational databases that they will create and populate to retrieve and present information. This will be demonstrated by building an in-class, instructor-led project. More advanced SQL concepts and database modeling will also be covered, as well as a brief introduction to the PHP scripting language. Later in the
semester, class time will be devoted to individual assistance on student projects as well as to short lectures on advanced Perl topics, object-oriented Perl, and installing Perl modules. The last two weeks will be devoted to student presentations and a peer critique of their project. Once again, whenever possible, this course will emphasize relevance to solving problems in molecular biology and bioinformatics.

Prerequisites: 410.601 Advanced Biochemistry, 410.602 Molecular Biology, 410.634 Practical Computer Concepts for Bioinformatics with a grade of A– or above or permission of associate program chair.

410.754 Comparative Microbial Genomics: From Sequence to Significance

Hundreds of bacterial and archael genomes have been completely sequenced and thousands more will follow in the near future. In this course we will learn how to make sense of this vast sea of information in order to understand the diversity of microbial life on earth: transforming DNA data into knowledge about the metabolism, biological niche and lifestyle of these organisms. The use and development of bioinformatic platforms for the sensible comparison of generic function and context are essential for work in modern microbiology. Topics covered will include methods for sequencing, gene finding, functional prediction, metabolic pathway and biological system reconstruction, phylogenomics, ontologies, and high-throughput functional genomics. Particular attention will be paid to publicly available bioinformatics resources and their proper use. Examples will be drawn from microbes of importance to human health, industry, ecology, agriculture, and biodefense. Lectures and discussions are integrated with computer exercises where appropriate.

Prerequisites: 410.601 Advanced Biochemistry, 410.602 Molecular Biology, 410.633 Introduction to Bioinformatics.

Staff

410.800 Independent Research in Biotechnology

Students in the biotechnology program have the opportunity to enroll in an independent research course. This elective course is an option after a student has completed at least eight graduate-level courses and has compiled a strong academic record. Prior to proposing a project, interested students must have identified a research topic and a mentor who is familiar with their prospective inquiry and who is willing to provide guidance and oversee the project. The research project must be independent of current work-related responsibilities as determined by the project mentor. The mentor may be a faculty member teaching in the biotechnology program, a supervisor from the student’s place of work, or any expert with appropriate credentials. Students are required to submit a formal proposal for review and approval by the biotechnology program committee. The proposal must be received by the Advanced Academic Programs office no later than one month prior to the beginning of the term in which the student wants to enroll in the course. Students must meet with a member of the program committee periodically for discussion of the project's progress, and a written document must be completed and approved by the program committee and project mentor for the student to receive graduate credit. Additional guidelines can be obtained from the AAP administrative office.

Prerequisites: All four core courses and four elective courses.

410.801 Biotechnology Thesis

Students wishing to complete a thesis may do so by embarking on a two semester thesis project, which includes 410.800 Independent Research in Biotechnology and 410.801 Biotechnology Thesis courses. This project must be a hypothesis-based original research study. The student must complete 410.800 Independent Research in Biotechnology and fulfill the requirements of that course, including submission of project proposal, final paper, and poster presentation, before enrolling in the subsequent thesis course. For the thesis course, students are required to submit a revised proposal (an update of the 410.800 Independent Research in Biotechnology proposal) for review and approval by the faculty advisor and biotechnology program committee one month prior to the beginning of the term. Students must meet the faculty advisor periodically for discussion of the project’s progress. Graduation with a thesis is subject to approval by the thesis committee and program committee, and requires the student to present their project to a faculty committee both orally and in writing.

Prerequisites: All four core science courses and six elective courses, which must include 410.800 Independent Research in Biotechnology and 410.645 Biostatistics.

Thesis Guidelines: If students work on sponsored research, the thesis advisor (or sponsoring institution) and the student should sign a letter of agreement on publication rights and authorship before work on the thesis begins. Research expenses, such as lab supplies, related travel, and services essential to the collecting and processing of data, are paid for by the thesis advisor or sponsoring organization. Special costs of thesis production, such as typing, art work, and duplicating of the thesis, are the student’s responsibility.

Thesis Format: The general format should follow the American Society for Microbiology author publication guidelines for one of the eleven ASM journal publications: http://journals.asm.org/misc/ifora.shtml.

Thesis Committee: The thesis committee includes the thesis advisor (mentor), faculty advisor, and a member of the program committee (or their designate).

605.201 Introduction to Programming Using Java

This course enables students without a background in software development to become proficient programmers who are prepared for a follow-on course in data structures. The Java language will be used to introduce foundations of structured, procedural, and object-oriented programming. Topics include I/O, data types, operators, operands, expressions, conditional statements, iteration, recursion, arrays, functions, parameter
Bioinformatics

605.41 Principles of Database Systems
This course examines the underlying concepts and theory of database management systems. Topics include database system architectures, data models, query languages, conceptual and logical database design, physical organization, and transaction management. The entity-relationship model and relational model are investigated in detail, object-oriented databases are introduced, and legacy systems based on the network and hierarchical models are briefly described. Mappings from the conceptual level to the logical level, integrity constraints, dependencies, and normalization are studied as a basis for formal design. Theoretical languages such as the relational algebra and the relational calculus are described, and high-level languages such as SQL and QBE are discussed. An overview of file organization and access methods is provided as a basis for discussion of heuristic query optimization techniques. Finally, transaction processing techniques are presented with a specific emphasis on concurrency control and database recovery.

Immer, Kung, Liu, Semmel

605.44 Principles of Computational Biology
This course is an interdisciplinary introduction to computational methods used to solve important problems in DNA and protein sequence analysis. The course focuses on algorithms but includes material to provide the necessary biological background for science and engineering students. Algorithms to be covered include dynamic programming for sequence alignment, such as Smith-Waterman, FASTA, and BLAST; hidden Markov models, such as the forward, Viterbi, and expectation maximization algorithms; a range of gene-finding algorithms; phylogenetic tree construction; and clustering algorithms.

Boon, Chlan, Lew, Rodriguez, Sadowsky, Sheppard

605.202 Data Structures
This course investigates abstract data types (ADTs), recursion, algorithms for searching and sorting, and basic algorithm analysis. ADTs to be covered include lists, stacks, queues, priority queues, trees, sets, and dictionaries. The emphasis is on the trade-offs associated with implementing alternative data structures for these ADTs. There will be four or five substantial Java programming assignments. (Not for graduate credit)

Prerequisites: One year of college mathematics.

Chittargi, Ferguson, Shyamsunder, Smith

605.401 Foundations of Software Engineering
Fundamental software engineering techniques and methodologies commonly used during software development are studied. Topics include various life cycle models, project planning and estimation, requirements analysis, program design, construction, testing, maintenance and implementation, software measurement, and software quality. Emphasized are structured and object-oriented analysis and design techniques, use of process and data models, modular principles of software design, and a systematic approach to testing and debugging. The importance of problem specification, programming style, periodic reviews, documentation, thorough testing, and ease of maintenance is covered.

Chavis, Gieszl, Schappelle, Wichmann, Yufik

605.421 Foundations of Algorithms
This follow-on course to data structures (e.g., 605.202) provides a survey of computer algorithms, examines fundamental techniques in algorithm design and analysis, and develops problem-solving skills required in all programs of study involving computer science. Topics include advanced data structures (red-black and 2-3-4 trees, union-find), recursion and mathematical induction, algorithm analysis and computational complexity (recurrence relations, big-O notation, NP-completeness), sorting and searching, design paradigms (divide and conquer, greedy heuristic, dynamic programming, amortized analysis), and graph algorithms (depth-first and breadth-first search, connectivity, minimum spanning trees, network flow). Advanced topics are selected from among the following: randomized algorithms, information retrieval, string and pattern matching, and computational geometry.

Prerequisite: 605.202 Data Structures or equivalent.

Boon, Chlan, Lew, Rodriguez, Sadowsky, Sheppard

605.443 The Semantic Web
(formerly 605.743 The Semantic Web)
The Semantic Web is an activity by the WWW Consortium to create a large set of XML-based languages, along with information on how various tags relate to real-world objects and concepts. This course covers Semantic Web technologies, including RDF (Resource Description Format—a structure for describing and interchangeing metadata on the web) and OWL (Web Ontology Language), with domain-specific standards and ontologies (formal specifications of how to represent objects and concepts). Representative applications of RDF, OWL, and ontologies will be discussed. Students will complete a Semantic Web project in an application area of interest to them. Examples will be drawn from several application areas throughout the course, including the life sciences, knowledge management, electronic commerce and web services choreography. Domain-specific implementation strategies such as LSID (Life Sciences Identifier) and various vertical ontologies will be addressed.

Prerequisite: 635.444 XML: Technology and Applications or equivalent.

Addison
Prerequisites: Familiarity with probability and statistics; working knowledge of Java, C++, or C; 605.205 Molecular Biology for Computer Scientists or a course in molecular biology and either a course in cell biology or biochemistry.

Przytycka and Rogozin

605.452 Biological Databases and Database Tools
The sequencing of the human genome and intense interest in proteomics and molecular structure have resulted in an explosive need for biological databases. This course surveys a wide range of biological databases and their access tools, and enables students to develop proficiency in their use. Databases introduced include genome and sequence databases such as GenBank and Ensemble, as well as protein databases such as PDB and SWISS-PROT. Tools for accessing and manipulating sequence databases such as BLAST, multiple alignment, Perl, and gene finding tools are covered. Specialized databases such as KEGG and HapMap are surveyed for their design and use. The course also focuses on the design of biological databases and examines issues related to heterogeneity, interoperability, complex data structures, object orientation, and tool integration. Students will create their own small database as a course project and will complete homework assignments using biological databases and database tools.

Prerequisites: 605.205 Molecular Biology for Computer Scientists or equivalent.

Hobbs

605.453 Computational Genomics
(formerly 605.753 Computational Genomics)
This course focuses on current problems of computational genomics. Students will use bioinformatics software and learn the principles underlying a variety of bioinformatics algorithms. In addition, students will explore and discuss bioinformatics research, and develop software tools to solve bioinformatics problems. Topics include analyzing eukaryotic, bacterial, and viral genes and genomes; finding genes in genomes and identifying their biological functions; predicting regulatory sites; assessing gene and genome evolution; and analyzing gene expression data.

Prerequisites: 605.205 Molecular Biology for Computer Scientists or equivalent, and familiarity with probability and statistics.

Ermolaeva

605.456 Computational Drug Discovery and Development
Recent advances in bioinformatics and drug discovery platforms have brought us significantly closer to the realization of rational drug design and development. Across the pharmaceutical industry, considerable effort is being invested in developing experimental and translational medicine, and it is starting to make a significant impact on the drug discovery process itself. This course examines the major steps of the evolving modern drug discovery platforms, the computational techniques and tools used during each step of rational drug discovery, and how these techniques facilitate the integration of experimental and translation medicine with the discovery/development platforms. The course will build on concepts from a number of areas including bioinformatics, computational genomic/proteomics, in-silico system biology, computational medicinal chemistry, and pharmaceutical biotechnology. Topics covered in the course include comparative pharmacogenomics, protein/antibody modeling, interaction and regulatory networks, QSAR/pharmacophores, ADME/toxicology and clinical biomarkers. Relevant mathematical concepts are developed as needed in the course.

Prerequisite: 605.205 Molecular Biology for Computer Scientists or equivalent.

Kumar

605.462 Data Visualization
This course explores the underlying theory and practical concepts in creating visual representations of large amounts of data. It covers the core topics in data visualization: data representation, visualization toolkits, scientific visualization, medical visualization, information visualization, flow visualization, and volume rendering techniques. The related topics of applied human perception and advanced display devices are also introduced.

Prerequisite: Experience with data collection/analysis in data-intensive fields or background in computer graphics (e.g., 605.467 Computer Graphics) is recommended.

Chlan

605.481 Distributed Development on the World Wide Web
This course examines three major topics in the development of applications for the World Wide Web. The first is web site development using HTML and related standards. The second is the implementation of client-side applications using the Java programming language, including user interface development, asynchronous event handling, multithreaded programming, and network programming. Distributed object protocols via RMI or CORBA and distributed database access via JDBC may also be introduced. The third topic is the design of server-side web applications, for which students will examine the underlying web protocol (HTTP), the development of client-side interfaces (e.g., via HTML forms), and the implementation of server-side programs (e.g., via Java servlets or traditional CGI).

Evans, Naber, Shyamsunder, Spiegel

605.484 Collaborative Development with Ruby on Rails
Modern web applications are expected to facilitate collaboration, with user participation being a significant facet of the system. Components such as wikis, blogs, and forums are now commonplace. While feature sets continue to expand, there is continuing pressure to develop and deploy capabilities...
more quickly to enable organizations to remain competitive. This pressure has led to the development of languages and frameworks geared toward rapid prototyping, with Ruby on Rails being the most popular. Ruby on Rails is a Model-View-Controller (MVC) framework that enables efficient application development and deployment. Techniques such as Convention over Configuration and Object-Relational Mapping with ActiveRecord along with enhanced AJAX support offer a simple environment with significant productivity gains. This code-intensive course introduces Ruby on Rails, the patterns it implements, and its applicability to the rapid development of collaborative applications.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent.

605.701 Software Systems Engineering
(formerly 605.706 Software Systems Engineering)

Software Systems Engineering applies engineering principles and the system view to the software development process. The course focuses on the engineering of complex systems that have a strong software component. This course is based on the philosophy that the key to engineering a good software system lies just as much in the process that is followed as in the purely technical regime. The course will show how good a software development process is and how to make a software process better by studying successful techniques that have been employed to produce correct software systems within budget. Topics are explored in a sequence designed to reflect the way one would choose to implement process improvements. These topics include steps to initiate process change, methods to establish control over the software process, ways to specify the development process, methods for quantitative process control, and how to focus on problem prevention. Students will prepare term projects.

Prerequisite: One software engineering course beyond 605.401 Foundations of Software Engineering.

Siegel and Donaldson, White

605.716 Modeling and Simulation of Complex Systems

This course focuses on the application of modeling and simulation principles to complex systems. A complex system is a large-scale nonlinear system consisting of interconnected or interwoven parts (such as a biological cell, the economy, or an ecological system). The course begins with an overview of complex systems, followed by modeling and simulation techniques based on nonlinear differential equations, networks, stochastic models, cellular automata, and swarm-like systems. Existing software systems will be used to illustrate systems and provide practical experience. During the semester, each student will complete a modeling project of a complex system. While this course is intended for computer science or engineering students interested in modeling any complex system, it may also be taken by Bioinformatics students interested in modeling complex biological systems. Students interested in bioinformatics will study a parallel track exposing them to existing whole cell modeling tools such as E-Cell, COPASI, and BioSpice.

Prerequisites: Knowledge of elementary probability and statistics and previous exposure to differential equations. Students applying this course to the M.S. in Bioinformatics should also have completed at least one Bioinformatics course prior to enrollment.

Note: This course may be counted toward a three course concentration in Bioinformatics.

Addison

605.741 Distributed Database Systems

This course investigates principles of distributed database systems, including design and architecture, query processing, transaction management, locking, recovery, and RAID technology. The course also covers JDBC programming through a variety of interfaces including stand-alone Java programs, Java applets on web browsers, and Common Gateway Interface programs on web browsers. The course blends theory with practice, and students will use distributed database concepts to develop JDBC applications and JDBC drivers for implementing web-based distributed databases.

Prerequisites: 605.441 Principles of Database Systems and 605.481 Distributed Development on the World Wide Web or equivalent knowledge of Java and HTML.

Silberberg

605.746 Machine Learning

How can machines improve with experience? How can they discover new knowledge from a variety of data sources? What computational issues must be addressed to succeed? These are questions that are addressed in this course. Topics range from determining appropriate data representation and models for learning, understanding different algorithms for knowledge and model discovery, and using sound theoretical and experimental techniques in assessing performance. Specific approaches covered include statistical techniques (e.g., k-nearest neighbor and Bayesian learning), logical techniques (e.g., decision tree and rule induction), function approximation (e.g., neural networks and kernel methods), and reinforcement learning. The topics are discussed in the context of current machine learning and data mining research. Students will participate in seminar discussions and will complete and present the results of an individual project.

Prerequisite: 605.445 Artificial Intelligence is recommended, but not required.

Sheppard

605.747 Evolutionary Computation

Recently, principles from the biological sciences have motivated the study of alternative computational models and approaches to problem solving. This course explores how principles from theories of evolution and natural selection can be used to construct machines that exhibit nontrivial behavior.
In particular, the course covers techniques from genetic algorithms, genetic programming, and artificial life for developing software agents capable of solving problems as individuals and as members of a larger community of agents. Specific topics addressed include representation and schemata; selection, reproduction, and recombination; theoretical models of evolutionary computation; optimal allocation of trials (i.e., bandit problems); search, optimization, and machine learning; evolution of programs; population dynamics; and emergent behavior. Students will participate in seminar discussions and will complete and present the results of an individual project. Prerequisite: 605.445 Artificial Intelligence is recommended but not required.

Sheppard

605.751 Computational Aspects of Molecular Structure

This course focuses on computational methods for studying protein and RNA structure, protein-protein interactions and biological networks. Algorithms for prediction of RNA secondary structure, protein-protein interactions, annotation of protein secondary/tertiary structure and function are studied in depth. Students will apply various computer programs and structure-visualization software to secondary and tertiary protein structure prediction, structure-structure comparison, protein domain classification, annotation of functionally important sites and protein design. Interesting aspects of protein interaction and metabolic networks are also discussed. Prerequisite: 605.205 Molecular Biology for Computer Scientists or equivalent. 605.451 Principles of Computational Biology is recommended.

Przytycka and Panchenko

605.754 Analysis of Gene Expression and High-Content Biological Data

(formerly 605.754 Analysis of Gene Expression)

The development of microarray technology, rapid sequencing, protein chips, and metabolic data has led to an explosion in the collection of “high-content” biological data. This course explores the analysis and mining of gene expression data and high-content biological data. A survey of gene and protein arrays, laboratory information management systems, data normalization, and available tools is followed by a more in-depth treatment of differential gene expression detection, clustering techniques, pathway extraction, network model building, biomarker evaluation, and model identification. Both clinical and research data will be considered. The student will develop skills in statistical analysis and data mining including statistical detection theory, nonlinear and multiple regression, entropy measurement, detection of hidden patterns in data, heuristic search and learning algorithms. Applied mathematical concepts and biological principles will be introduced, and students will focus on algorithm design and software application for designing and implementing novel ways of analyzing gene, protein and metabolic expression data. Students will complete data analysis assignments individually and in small teams. Prerequisites: 605.205 or equivalent or a prior course in bioinformatics, a course in probability and statistics, and ability to program in a high-level language.

Note: There are no exams, but programming assignments are intensive. Students in the M.S. Bioinformatics program may take both this course and 410.671 Microarrays and Analysis as the content is largely mutually exclusive.

Addison

605.755 Systems Biology

During the last decade, systems biology has emerged as an effective tool for investigation of complex biological problems, placing emphasis on the analysis of large-scale datasets and quantitative treatment of experimental results. In this course students will explore recent advances in systems biology analysis of intracellular processes. Examples of modeling and experimental studies of metabolic, genetic, signal transduction and cell cycle regulation networks will be studied in detail. The classes will alternate between consideration of network-driven and network element (gene, metabolite, or protein)-driven approaches. Students will learn to use Boolean, differential equations, and stochastic methods of analysis and will become acquainted with several powerful experimental techniques, including basics of microfabrication and microfluidics. As a course project, students will develop a model of a signal transduction or metabolic pathway. Prerequisites: Courses in molecular biology (605.205 Molecular Biology for Computer Scientists or 410.602 Molecular Biology) and differential equations.

Levchenko

605.759 Independent Project in Bioinformatics

This course is for students who would like to carry out a significant project in bioinformatics as part of their graduate program. The course may be used to conduct minor research, an in-depth literature survey, or a software implementation related to recent developments in the field. Students who enroll in this course are encouraged to attend at least one industry conference in bioinformatics related to their area of study. To enroll in this course, the student must be within two courses of degree completion and must obtain the approval and support of a sponsoring faculty member.

Note: A student may not receive credit for both 605.759 and 605.802 Independent Study in Computer Science II.

Staff

605.782 Web Application Development with Servlets and JavaServer Pages (JSP)

This project-oriented course investigates techniques for building server-side programs for dynamically generated websites, electronic commerce, web-enabled enterprise computing, and other applications that require WWW access to server-based resources. Particular attention will be paid to methods for making server-side applications efficient, maintainable, and flexible. Topics include handling HTTP request information,
generating HTTP response data, processing cookies, tracking sessions, designing custom JSP tag libraries, and separating content from presentation through use of JavaBeans components and the MVC (Model 2) architecture.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent Java experience.

Chittargi, Hall

605.787 Rich Internet Applications with Ajax

Using a web browser to access online resources is convenient because it provides universal access from any computer on any operating system in any location. Unfortunately, it often results in a poor user experience because HTML is a weak and noninteractive display language and HTTP is a weak and inefficient protocol. Full-fledged browser-embedded programs (e.g., ActiveX components, Java applets) have not succeeded in penetrating the market adequately, so a new class of applications has grown up that uses only the capabilities already available in most browsers. These applications were first popularized by Google, but have since exploded in popularity throughout the developer community. The techniques to implement them were based on a group of technologies collectively known as Ajax, and the resultant applications were richer than the relatively static pure-HTML-based web applications that preceded them. These applications have become known as Ajax applications, rich Internet applications, or web 2.0 applications. This course will examine techniques to develop and deploy Ajax applications. We will look at the underlying techniques, then explore client-side tools (e.g., scriptaculous), server-side tools (e.g., Direct Web Remoting), and hybrid tools (e.g., the Google Web Toolkit) to simplify the development process. We will also examine closely related technologies such as Flash/Flex and OpenLaszlo, along with the accompanying issues of usability, efficiency, security, and portability.

Prerequisite: 605.782 Web Application Development with Servlets and JavaServer Pages (JSP) or equivalent servlet and JSP experience.

Chittargi, Silberberg

635.444 XML: Technology and Applications

This course covers the concepts, technology, and applications of XML (Extensible Markup Language), especially to Web-based technologies. The course concentrates on XML fundamentals and associated technologies, and processing XML using Java. Topics covered include the XML Specification; XML Namespaces; Document Type Definitions (DTDs); XML Schemas; XML Transformation (XSLT); XML Links and XML Pointers; and parsing XML using the Document Object Model (DOM) and Simple API (Application Programming Interface) for XML (SAX), the Java API for XML Processing (JAXP), and the Java Document Object Model (JDOM). Additional topics may be drawn from Cascading Style Sheets (CSS); XQuery; the Simple Object-Oriented Protocol (SOAP); Web Services Description Language (WSDL); Universal Description, Discovery, and Integration (UDDI); applications of XML such as RDF; and the architecture of Web Service, EAI, and B2B systems using XML.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent Java experience.

Chittargi, Silberberg
Chemical and Biomolecular Engineering

In the past decade, the scope of chemical and biomolecular engineering has expanded dramatically. While many chemical engineers continue to work in the chemical and petroleum industries, a growing number can also be found employed by biotechnology and pharmaceutical companies, electronics manufacturing facilities, or the environmental divisions of corporations or government institutions. In each of these industries, the chemical engineering concepts of transport phenomena, reaction kinetics, and thermodynamics are fundamental to technical issues addressed by engineers.

To recognize the growing need for chemical and biomolecular engineers to acquire a broad range of skills in the basic sciences and related engineering fields, in addition to advanced training in core chemical and biomolecular engineering competencies, Johns Hopkins has developed a flexible Master of Chemical and Biomolecular Engineering program with concentrations in two subfields: cell and molecular biotechnology/biomaterials, and nano/microtechnology and colloids and interfaces. Hopkins will also continue to offer the traditional Master of Chemical Engineering degree in which the student develops a core program in chemical and biomolecular engineering, augmented with elective courses from related engineering fields, the basic sciences, and mathematics. This degree encompasses a professional, non-thesis curriculum for practicing engineers.

Program Committee

Dilip Asthagiri, Program Chair
Assistant Professor, Chemical and Biomolecular Engineering
Whiting School of Engineering

Konstantinos Konstantopoulos, Department Chair
Professor, Chemical and Biomolecular Engineering
Whiting School of Engineering

Admissions Requirements

Applicants must be in the last semester of their undergraduate study or hold a bachelor’s degree in chemical engineering from an accredited college or university. They must have earned a grade point average of at least 3.0 on a 4.0 scale in upper-level undergraduate courses or hold a graduate degree in a technical discipline. Applicants with a bachelor’s degree in a related science or engineering field may be considered if they have taken a sufficient number of undergraduate chemical and biomolecular engineering courses. (See additional admission requirements for non-chemical engineering majors below.) All admission decisions are made by the program committee on a case-by-case basis.

Program Requirements

Upon entering the program, students must complete a program plan and submit it to the program chair for approval. Students who choose to pursue a Master of Chemical and Biomolecular Engineering degree with concentration in one of the subfields must select courses that do not overlap significantly in technical content with those courses that are part of the core curriculum. Faculty advisors will assist students in making this determination. As one of the program electives, students may complete a faculty-supervised independent project, involving in-depth study or critical review of a chemical engineering subject area. Candidates must complete the required course work within five years of admission.

Core Courses

There are four required courses that are offered only at the Homewood campus. The student selects additional engineering or science courses with the help of the graduate advisor to design a curriculum appropriate for the student’s engineering interest.

- 540.602 Cellular and Molecular Biotechnology of Mammalian Systems
- 540.615 Interfacial Science with Applications to Nanoscale Systems
- 540.630 Thermodynamics and Statistical Mechanics
- 540.652 Fundamentals of Biotransport Phenomena

Requirements for Master of Chemical and Biomolecular Engineering

To earn the Master of Chemical and Biomolecular Engineering degree, a student must complete at least 10 one-term courses approved by the student’s advisor. (Students completing a research project need to take only six courses.) These include the four core courses listed above plus six additional courses (for which prerequisites have been met)—three to six selected from the Whiting School’s Engineering for Professionals program (EP) and no more than two courses selected from the Krieger School of Arts and Sciences Advanced Academic Program in Biotechnology (courses listed under Group III).

Requirements for Master of C.B.E. with a Concentration in Cell and Molecular Biotechnology/Biomaterials

Within the past two decades, remarkable advances have taken place in the life sciences. Chemical and biomolecular engineers will be essential for putting many of these basic science discoveries to practical use. To accomplish these goals, chemical engineers must understand biology and communicate with the life scientists. EP offers a program that provides chemical engineering students with complementary exposure to the life sciences and biomedical engineering. To earn the Master of Chemical Engineering/Cell and Molecular Biotechnology, a student must complete the core courses listed above plus six additional electives which may include:
Chemical and Biomolecular Engineering

540.614 Computational Protein Structure Prediction and Design
540.626 Introduction to Biomacromolecules
540.637 Application of Molecular Evolution to Biotechnology
510.607 Biomaterials II
510.617 Advanced Topics in Biomaterials

Additionally, students may complete two to three courses selected from either the Group II offerings of the Whiting School Master of Science in Applied Biomedical Engineering program and/or Group III offerings of the Krieger School of Arts and Sciences Master of Science in Biotechnology program.

Requirements for Master of C.B.E. with a Concentration in Nano/Microtechnology and Colloids and Interfaces

Nano and microtechnology involves the science and technology of extreme miniaturization. We live in an era where it has become possible to structure materials and devices on the nanometer length scales to allow for unprecedented control over the chemical, electronic, and optical properties of materials. Moreover, when the size of the structures and devices approaches the nanometer-length scales, quantum and atomistic properties dominate, giving rise to new and novel phenomena such as quantum conductance and unusual chemical, mechanical, and optical properties. This degree will focus on the challenges of fabricating such small structures and devices, methods to characterize the structures, fundamental properties, and applications. To earn the Master of Chemical Engineering Nano/Microtechnology, a student must complete the four required core courses plus six electives (of the six at least three electives must be from below):

520.772 Advanced Integrated Circuits
540.604 Therapeutic and Diagnostic Colloids
540.615 Interfacial Science with Applications to Nanoscale Systems
540.640 Micro to Nanotechnology

Program Electives

Group I: Whiting School Chemical and Biomolecular Engineering Elective Courses
540.603 Colloids and Nanoparticles
540.626 Introduction to Biomacromolecules
540.640 Micro to Nanotechnology
540.610 Fundamentals of Membrane Science for Filtration Applications

Group II: Whiting School Applied Biomedical Engineering Courses
580.625-626 Structure and Function of the Auditory and Vestibular Systems
580.632 Ionic Channels in Excitable Membranes
585.405-406 Physiology for Applied Biomedical Engineering
585.407 Molecular Biology
585.408 Medical Sensors and Devices
585.605 Medical Imaging
585.606 Medical Image Processing
585.608 Biomaterials
585.609 Cell Mechanics
585.610 Biochemical Sensors
585.618 Biological Fluid and Solid Mechanics

Group III: Krieger School Biotechnology Core Courses and Elective Courses
410.601 Advanced Biochemistry
410.602 Molecular Biology
410.603 Advanced Cell Biology I
410.645 Biostatistics

Additional Admission Requirements for Non-Chemical Engineering Majors

In order to be considered for the Master of Chemical Engineering program, undergraduates with a bachelor’s degree in a science or other engineering discipline must have a background in mathematics through differential and integral calculus and differential equations and have completed undergraduate course work in physical chemistry and thermodynamics. In addition, the applicants must complete the following undergraduate chemical engineering courses from the day program of the Whiting School of Engineering or other peer institution:

Group IV: Whiting School of Engineering Non-Chemical Engineering Majors Prerequisite Courses
540.203 Engineering Thermodynamics
540.204 Applied Physical Chemistry
540.301 Kinetic Processes
540.303 Transport Phenomena I
540.304 Transport Phenomena II
Course Descriptions

540.202 Introduction to Chemical Engineering
Process Analysis
This course provides an introduction to chemical engineering and the fundamental principles of chemical process analysis, including formulation and solution of material and energy balances on chemical processes. Reductionist approaches to the solution of complex, multiunit processes will be emphasized, along with an introduction to the basic concepts of thermodynamics and chemical reactions. (Not for graduate credit)
Prerequisites: 030.101 Introductory Chemistry, 171.101 General Physics for Physical Science Majors I.

Staff

540.203 Engineering Thermodynamics
This course covers the formulation and solution of material, energy, and entropy balances with an emphasis on open systems. A systematic problem-solving approach is developed for chemical process-related systems. This approach consists of decoupling the process into its components, establishing relationships between the known and unknown variables, assembling the information needed to solve for the unknown variables, and then obtaining a physically meaningful solution. Extensive use is made of classical thermodynamic relationships and constitutive equations. Applications include the analysis and design of engines, refrigerators, heat pumps, compressors, and turbines. (Not for graduate credit)
Prerequisites: 030.101 Introductory Chemistry, 171.101 General Physics for Physical Science Majors I and either 540.202 or permission of instructor.
Corequisite: 110.202 Calculus III (Calculus of Several Variables).

Frechette

540.204 Applied Physical Chemistry
This course offers an introduction of the methods used to solve phase and chemical equilibria problems. The basic thermodynamic relationships to describe phase equilibrium of single-component and multicomponent systems are developed. Thermodynamic models for calculating fugacity are presented. These include equations of state, liquid solution models, and fugacity estimation methods. Multicomponent phase equilibrium problems addressed are cover liquid-vapor, liquid-liquid, liquid-liquid-vapor, and solid-vapor. Basic thermodynamic relationships to describe chemical equilibria are also developed, and the thermodynamic models for calculating fugacity are applied to their solution. (Not for graduate credit)
Prerequisites: 540.203 Engineering Thermodynamics and either 540.202 or permission of instructor.

Gracias

540.301 Kinetic Processes
This course provides a review of numerical methods in reactor design, including homogeneous kinetics and interpretation of reaction rate data; batch, plug flow, and stirred tank reactor analyses, including CSTR’s in series; selectivity and optimization considerations in multiple reaction systems; nonisothermal reactors; elements of heterogeneous kinetics, including adsorption isotherms and basic Hougen-Watson rate models; coupled transport and chemical reaction rates; and fixed bed reactor design, including axial dispersion models. A brief introduction to residence time distributions and nonideal reactor models is also provided. (Not for graduate credit)
Prerequisites: 540.203 Engineering Thermodynamics and 540.303 Transport Phenomena I, and either 540.202 or permission of instructor.

540.303 Transport Phenomena I
This course provides an introduction to the field of transport phenomena, including molecular mechanisms of momentum transport (viscous flow); energy transport (heat conduction); mass transport (diffusion); isothermal equations of change (continuity, motion, and energy); development of the Navier Stokes equation; development of nonisothermal and multi-component equations of change for heat and mass transfer; and exact solutions to steady state, isothermal unidirectional flow problems and steady state heat and mass transfer problems. The analogies between heat, mass, and momentum transfer are emphasized throughout the course. (Not for graduate credit)
Prerequisite: A grade of C or better in Calculus I, II, and III and 540.202 or permission of instructor. Corequisite: 500.303 Applied Mathematics I.

Konstantopoulos

540.304 Transport Phenomena II
Topics covered by this course include dimensional analysis and dimensionless groups, laminar boundary layers, introduction to turbulent flow, definition of the friction factor, macroscopic mass, momentum and mechanical energy balances (Bernoulli’s equation), metering of fluids, convective heat and mass transfer, heat and mass transfer in boundary layers, correlations for convective heat and mass transfer, oiling and condensation, and interphase mass transfer. (Not for graduate credit)
Prerequisites: 540.303 Transport Phenomena I and either 540.202 or permission of instructor.

Drazer

540.306 Chemical and Biological Separations
This course covers principles of staged and continuous-contacting separation processes. Examples include adsorption, distillation, extraction, adsorption, and process synthesis. (Not for graduate credit)
Prerequisites: 540.202 Introduction to Chemical Engineering Process Analysis and 540.303 Transport Phenomena I.

Betenbaugh

55
540.311 Chemical Engineering Laboratory

Students learn to characterize equipment whose operation is not well defined by identifying the important operating variables, deciding how best to obtain them, and using measured or calculated values of these operating variables to predict and improve performance. Each student analyzes four of the following experiments: distillation, gas absorption, liquid-liquid extraction, chemical kinetics in a tubular flow reactor, and fermentation. In addition to technical objectives, this course stresses oral and written communication skills and the ability to work effectively in groups. (Not for graduate credit)

Prerequisites: 540.301 Chemical Kinetics, 540.304 Transport Phenomena II, 540.306 Mass Transfer and either 540.202 or permission of instructor, and 540.490 Chemical and Laboratory Safety.

Katz, Dahuron, Goffin, Ostermeier, Gerecht

540.314 Chemical Engineering Process Design

This course provides an introduction to design methods for multiunit processes, including flowsheet development through reaction and separation-path synthesis; degree of freedom analysis for large systems; equipment design and specification; and estimation of capital costs, operating costs, and cash flow. Other topics include optimization techniques and energy integration. Simulation packages, such as ChemCAD, are also introduced. Written reports and oral presentations are required on assigned design projects. (Not for graduate credit)

Prerequisites: 540.301, 540.304, 540.306, and either 540.202 or permission of instructor.

Katz, Dahuron, Goffin

540.420 Build a Genome

In this combination lecture/laboratory “Synthetic Biology” course, students will learn how to make DNA building blocks used in an international project to build the world’s first synthetic eukaryotic genome, “Saccharomyces cerevisiae v. 2.0.” Please study the wiki www.syntheticyeast.org for more details about the project. Following a biotechnology boot-camp, students will have 24/7 access to computational and wet-lab resources and will be expected to spend 15-20 hours per week on this course. Advanced students will be expected to contribute to the computational and biotech infrastructure.

Prerequisite: Permission of instructors. Interview required. Must understand the fundamentals of DNA structure, DNA electrophoresis and analysis, and polymerase chain reaction (PCR), and must be either experienced with molecular biology lab work or adept at programming with a biological twist. Co-listed with 020.420, 020.451, and 580.420.

Boeke, Ostermeier

540.426 Introduction to Biomacromolecules

This course introduces modern concepts of polymer physics to describe the conformation and dynamics of biological macromolecules such as filamentous proteins and nucleic acids. We will introduce scattering techniques, and micromanipulation techniques, as well as rheology, applied to the study of polymers.

Wirtz

540.437 Application of Molecular Evolution to Biotechnology

One of the most promising strategies for successfully designing complex biomolecular functions is to exploit nature’s principles of evolution. This course provides an overview of the basics of molecular evolution as well as its experimental application to the engineering of proteins, DNA, and RNA with functions of therapeutic, scientific, or economic value. The course will cover the generation of diversity (e.g., mutagenesis and DNA shuffling), the coupling of genotype and phenotype (e.g., surface display of proteins and peptides), and methods for screening and selection.

Prerequisites: Junior standing and a basic understanding of recombinant DNA technology.

Ostermeier

540.440 Micro and Nanotechnology

Micro/nanotechnology is the field of fabrication, characterization, and manipulation of extremely small objects (dimensions on the micron to nanometer length scale). Microscale objects, because of their small size, are expected to be at the frontier of technological innovation for the next decade. This course will include a description of the materials used in microtechnology, methods employed to fabricate nanoscale objects, techniques involved in characterizing and exploiting the properties of small structures, and examples of how this technology is revolutionizing the areas of electronics and medicine.

Note: This course is cross-listed with 540.640.

Gracias

540.602 Cellular and Molecular Biotechnology of Mammalian Systems

This course covers molecular biology techniques, including DNA, RNA, and proteins; control of gene expression; microarray technology and proteomics; cell-cell signaling and communication; cell adhesion; extracellular matrix; introductory glycobiology; cell structure, including membrane, cytoskeleton, organelles, proteins, secretion, and degradation; and cell replication and death, including cell cycle, cell division, senescence, and apoptosis; multicellular systems, including tissue development, including nervous system, ectoderm (neuronal crest), mesoderm, endoderm; aging; and stem cell biology, including adult and fetal stem cells, germ and embryonic stem cells, cell expansion of undifferentiated and progenitor cells, differentiation regulation, and control/engineering of stem cell renewal and differentiation in vitro.

Bettenbaugh, Konstantopoulos

540.603 Colloids and Nanoparticles

This course explains the fundamental principles related to interactions, dynamics, and structure in colloidal, nanopar-
article, and interfacial systems. Concepts covered include hydrodynamics, Brownian motion, diffusion, sedimentation, electrophoresis, colloidal and surface forces, polymeric forces, aggregation, deposition, and experimental methods. Modern topics related to colloids in nanoscience and technology will be discussed throughout the course with frequent references to recent literature.

Bevan

540.614 Computational Protein Structure Prediction and Design
The prediction of protein structure from the amino acid sequence has been a grand challenge problem for over fifty years. With recent progress in research, it is now possible to blindly predict many protein structures and even to design new structures from scratch. This class will introduce the fundamental concepts in protein structure, biophysics, optimization, and informatics that have enabled the breakthroughs in computational structure prediction and design. Problems covered will include protein folding and docking, design of ligand-binding sites, design of turns and folds, and design of protein interfaces. Class will consist of lectures and hands-on computer workshops. Students will learn to use molecular visualization tools and write programs with the PyRosetta protein structure software suite, including a computational project.

Prerequisite: Programming experience is helpful but not required.

Gray

540.610 Fundamentals of Membrane Science for Filtration Applications
This course focuses on the principles underlying the formation of micro-to-nanostructured membranes applied in a range of modern filtration technologies such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, pervaporation, gas separation, electrodialysis, hemodialysis, fuel cells, drug delivery, tissue engineering, and sensors. Polymeric membranes prepared by phase separation will be examined in detail, while interfacial polymerization and sol-gel processing to prepare thin film composites and ceramic membranes, respectively, will also be studied. The first part of the course will discuss how concepts from thermodynamics, multicomponent diffusion, and fluid/solid mechanics are applied to membrane formation theory. The second part will present membrane transport theory and demonstrate how engineering principles are applied to the various filtration applications and the design of modules.

Prerequisite: Graduate Thermodynamics and Transport Phenomena are recommended. Programming experience (MATLAB/Mathematica).

Sai Prakash

540.615 Interfacial Science with Applications to Nanoscale Systems
Nanostructured materials intrinsically possess large surface area (interface area) to volume ratios. It is this large interfacial area that gives rise to many of the amazing properties and technologies associated with nanotechnology. In this class, we will examine how the properties of surfaces, interfaces, and nanoscale features differ from their macroscopic behavior. We will compare and contrast fluid-fluid interfaces with solid-fluid and solid-solid interfaces, discussing fundamental interfacial physics and chemistry, as well as touching on state-of-the-art technologies.

Frechette

540.626 Introduction to Biomacromolecules
This course introduces modern concepts of polymer physics to describe the conformation and dynamics of biological macromolecules such as filamentous actin, microtubule, and nucleic acids. We will introduce scattering techniques and micromanipulation techniques, as well as theory applied to the study of polymers, for tissue engineering and drug delivery applications.

Wirtz

540.630 Thermodynamics and Statistical Mechanics
We will develop equilibrium thermodynamics and statistical mechanics from the unified perspective of entropy maximization subject to constraints. After a brief review of classical thermodynamics, we will undertake the study of statistical mechanics leading up to the study of liquids, especially liquid water, and of the hydration of (bio)molecules. We will show how hydration of solutes is conceptually simple when viewed on the basis of quasi-chemical generalizations of the potential distribution theorem. We will highlight how the quasi-chemical generalizations readily allow one to include quantum chemical-level of description in the statistical mechanics of biologically interesting processes. If time permits, we will also touch on modern developments in statistical mechanics that connect non-equilibrium work to equilibrium free energies.

Asthagiri

540.637 Molecular Evolution of Biotechnology
One of the most promising strategies for successfully designing complex biomolecular functions is to exploit nature’s principles of evolution. This course provides an overview of the basics of molecular evolution as well as its experimental implementation. Current research problems in evolution-based biomolecular engineering will be used to illustrate principles in the design of biomolecules (i.e., protein engineering, RNA/DNA engineering), genetic circuits, and complex biological systems including cells.

Ostermeier

540.640 Micro and Nanotechnology
Micro/nanotechnology is the field of fabrication, characterization, and manipulation of extremely small objects (dimensions on the micron to nanometer length scale). Microscale objects, because of their small size, are expected to be at the frontier of technological innovation for the next decade. This course will include a description of the materials used in microtechnology, methods employed to fabricate nanoscale objects, techniques involved in characterizing and exploiting the properties of

57
small structures, and examples of how this technology is revolutionizing the areas of electronics and medicine.

Note: This course is cross-listed with 540.440.

Gracias

545.447 System Safety and Risk Management
Methods, mathematics, and management approaches for evaluating the safety of complex technical systems are presented. Examples of risk assessments pertaining to the design, operation, siting, transportation, and emergency planning of both chemical and nuclear materials are studied. Topics include probability and reliability concepts, failure data analysis, FMEA (failure mode and effects analysis), fault-tree and event-tree techniques, human factors and human error models, multi-objective risk assessment, optimization and display of information, safety goals, ethics, perceptual risk, reliability assurance and maintenance, cost-benefit and analysis for safety improvements, accident mitigation, and research priority setting. Also, radiological and toxicological aspects of consequence and modeling for estimating environmental and public health impacts are reviewed.

Margulies

545.449 Statistical Design of Experiments
This course introduces the basic concepts which underlie modern statistically designed experimental programs. These programs typically test many variables simultaneously and are very efficient tools for developing empirical mathematical models that accurately describe physical and chemical processes. They are readily applied to production plant, pilot plant, and laboratory systems and should be a part of every practicing engineer’s repertoire. Topics covered include fundamental statistics; the statistical basis for recognizing real effects in noisy data; statistical tests and reference distributions; analysis of variance; construction, application, and analysis of factorial and fractional factorial designs; screening design; response surface and optimization methods; and application to plant operations.

Gracias

545.475 Spectroscopic and Analytical Methods
This is an advanced course in characterization of macromolecules using optical, thermal, and mass spectrometric techniques. Microscopy and surface analysis methods will also be explored. The use of each method will be discussed in terms of the design, construction, and operation of the instrumentation. This will be followed by application of the method to problems in macromolecular characterization.

Murray

545.642 Advanced Chemical Kinetics and Reactor Design
This course covers complex reaction networks, Wei-Prater analysis, and the Himmelblau-Jones-Bischoff method. Detailed coverage is provided of Hougen-Watson models for heterogeneous catalytic reaction kinetics, model discrimination, and parameter estimation. Other topics include coupled heterogeneous reaction and transport; generalized moduli catalyst deactivation models; batch reactors, CSTRs, and PFRs; fixed bed reactors including stability criteria and multibed optimization; residence time distributions and non-ideal reactor models; and fluidized bed and multiphase reactors.

Staff
Civil Engineering

The civil engineering profession is dedicated to developing and applying scientific and technological knowledge to serve the needs of our society. Buildings, power plants, roadways, bridges, water supply systems, wastewater systems, and ocean and estuarine structures are all part of the infrastructure of society that comes under the purview of the civil engineering discipline. Increasingly, civil engineers are also involved in the development of less traditional structures and systems, such as mechanical prostheses and space vehicles. In addition, the scope of expertise of the modern civil engineer must include a concern for environmental, social, and economic issues. Graduate courses in the focus areas of structural engineering, geotechnical engineering, and ocean engineering are offered in the Master of Civil Engineering program. Additional courses are available in the areas of mechanics, probabilistic methods, mathematics, environmental engineering, and other associated areas of technology.

Students may choose to specialize in one of the three focus areas (sample selections of courses in these areas are listed below) or in the general civil engineering area by selecting courses from any of the three focus areas and other approved courses listed in this catalog. With prior approval of the program chair, students may add breadth to their program by selecting three of their electives from other offerings of the Whiting School of Engineering.

The Department of Civil Engineering maintains fully equipped laboratories for structures and structural dynamics, soil mechanics, fluid mechanics, and water-wave mechanics with supporting computational facilities. These laboratories are available for both demonstrations and independent study.

Program Committee

A. Rajah Anandarajah, Program Chair
Professor, Civil Engineering
Whiting School of Engineering

Robert A. Dalrymple
Professor, Civil Engineering
Whiting School of Engineering

Benjamin Schafer
Department Chair, Civil Engineering
Whiting School of Engineering

Admission Requirements

Applicants must meet the general requirements for admission to graduate study outlined in this catalog. Each applicant must have a degree in civil engineering or an appropriate related field, which provides the necessary preparation for graduate-level courses. All admissions decisions are made by the program committee on an individual basis.

Course Requirements

The Master of Civil Engineering program emphasizes four focus areas: structural engineering, geotechnical engineering, ocean engineering, and general civil engineering. Students may add breadth to their program by selecting three of their elective courses from other offerings of the Whiting School of Engineering.

Ten one-term courses, approved by the faculty advisor, must be completed within a period of five years. At least seven of the courses must be in civil engineering; however, appropriate courses from related or supporting fields are allowed with prior approval of the program chair. Up to two of the 10 required courses may be taken in research. Courses in the program must be at the 400-level or above. Unless prior approval is obtained from the program chair, at least five of the courses in the program must be 600-level or above.

Please refer to the course schedule published each term for exact dates, times, locations, fees, and instructors. Courses numbered 600-level and above are open only to those students who are admitted to graduate study and to undergraduates who have satisfactorily completed appropriate prerequisites.

Core, Concentrations, and Electives

The 10-course MCE program consists of two parts: 1) the core of the program, consisting of two civil engineering courses and one course in applied mathematics, and 2) electives, consisting of seven courses. Sample selections of courses in the four concentrations are presented below. Additional civil engineering courses are listed in this catalog. While some of these courses are offered in late afternoons and evenings, the remaining courses are offered during the day. Most 600- and 700-level courses are offered on a two-year cycle.

Required Core

- 560.475 Advanced Soil Mechanics
- 560.729 Structural Mechanics

One of the Following:

- 535.441 Mathematical Methods for Engineers
- 615.441 Mathematical Methods for Physics and Engineering

Electives

Sample Structural Engineering Electives

- 560.730 Finite Element Methods
- 560.752 Structural Dynamics
- 565.430 Structural Design with Timber, Masonry, and Other Materials
- 565.605 Advanced Reinforced Concrete Design
- 565.620 Advanced Steel Design
- 565.630 Prestressed Concrete Design
- 565.736 Earthquake Engineering
Civil Engineering

Sample Geotechnical Engineering Electives
560.732 Numerical Methods in Geomechanics
560.745 Retaining Structures and Slope Stability
565.625 Advanced Foundation Design
565.635 Ground Improvement Methods
565.645 Marine Geotechnical Engineering
565.742 Soil Dynamics
565.770 Fundamentals of Soil Behavior

Sample Ocean Engineering Electives
560.745 Retaining Structures and Slope Stability
560.780 Coastal Engineering
560.781 Introduction to Water Wave Mechanics
560.782 Advanced Ocean Hydrodynamics
565.625 Advanced Foundation Design
565.645 Marine Geotechnical Engineering
565.650 Port and Harbor Engineering

General Civil Engineering Electives
Any seven courses, including at least four civil engineering courses, listed in this catalog.

Course Descriptions

560.435 Probability and Statistics in Civil Engineering
This course covers the development and applications of the analysis of uncertainty—including basic probability, statistics, and decision theory—in the civil engineering areas of soil mechanics, structures, transportation, and water resources.
Prerequisite: 110.109.
Igusa

560.475 Advanced Soil Mechanics
This course discusses the difference between soils and other materials; stresses in soils due to structural foundations; elastic, consolidation, and secondary consolidation settlements of footings; shear strength and stress-strain behavior of clays and sands; approximate nonlinear elastic, Mohr-Coulomb, Ramberg-Osgood, and hyperbolic stress-strain models for soils; nonlinear Winkler foundation analysis of piles, pile groups, and drilled shafts due to vertical and horizontal loads; and foundation spring constraints for superstructure analysis.
Prerequisite: 560.305.
Anandarajah

560.729 Structural Mechanics
This course presents basic solid mechanics for structural engineers, including stress, strain, and constitutive laws; linear elasticity and visco-elasticity; introduction to nonlinear mechanics; static, dynamic, and thermal stresses; specialization of theory to one- and two-dimensional cases; plane stress and plane strain, rods, and beams; work and energy principles; and variational formulations.
Anandarajah

560.730 Finite Element Methods
The basic concepts of the FEM are presented for one-, two-, and three-dimensional boundary value problems (BVPs). Problems from heat conduction and solid mechanics are addressed. The key topics include relationships between strong, weak, and variational statements of BVPs, weighted residual methods with an emphasis on the Galerkin method, specialization of Galerkin approximations of weak statements and Ritz approximations of variational statements to obtain finite element formulations, specific element formulations, convergence properties, solutions of linear systems of equations, and time-dependent problems.
Staff

560.732 Numerical Methods in Geomechanics
This course covers finite element modeling of geomechanics problems, including seepage problems, elastic and plastic solid mechanics problems, and earthquake engineering problems. Other course topics include fundamentals of hardening plasticity, advanced soil constitutive models, applications of finite element method to the analysis of slopes, seepage through soils, sheet-pile walls, piles, earthquake liquefaction problems, and earthquake soil structure interaction problems.
Prerequisite: Background in finite element analysis or permission of instructor.
Anandarajah

560.745 Retaining Structures and Slope Stability
Topics for this course include earth pressure theories; design and behavior of rigid, flexible, braced, tied-back, slurry, and reinforced soil structures; stability of excavation, cut, and natural slopes; methods of slope stability analysis; effects of water forces; shear strength selection for analysis; and stability and seepage in embankment dams.
Prerequisite: 560.305 or equivalent.
Staff

560.752 Structural Dynamics
This course provides a brief review of rigid-body dynamics, Lagrange’s equations and Hamilton’s principle, free and deterministic forced vibration of undamped and damped single- and multi-degree of freedom systems, vibration of continuous systems, approximate methods of analysis, and introduction to random vibration of linear systems.
Prerequisite: Permission of instructor required.
Corequisite: 560.445 Advanced Structural Analysis or 560.455 Structural Mechanics.
Staff
560.756 Earthquake Engineering
Topics for this course include plate tectonics, seismicity of the Earth, and engineering seismology—including quantification and classification of earthquake ground motions, dynamics of structures subjected to earthquake loads, design spectra, building code provisions, design concepts and detailing, soil-structure interaction, and response of special structures.
Corequisite: 560.752.

560.757 Random Fields
This course covers stochastic field theory, as applied to one-, two-, and n-dimensional random processes; descriptors of homogeneous and non-homogeneous random fields; study of load average processes; and review of other topics in random field theory and applications.

560.758 Random Vibration
This course discusses random process theory, modeling of stationary and non-stationary excitations, and prediction of response of single- and multi-degree-of-freedom systems and continuous systems.
Prerequisite: 560.752 or equivalent.

560.760 Structural Stability
Topics covered by this course include concepts of stability of equilibrium; stability criteria; work, energy, and variational methods; elastic buckling of columns, beams, frames, and plates; and an introduction to inelastic and dynamic buckling.
Prerequisite: 560.445, 560.455, or equivalent.

560.780 Coastal Engineering
This course provides an overview of coastal processes and their influence on engineering at the shoreline, including waves and currents, equilibrium beach profiles, littoral transport, shoreline modeling, and the behavior of tidal inlets. The impact of structures on the coastline is discussed as well.

560.781 Introduction to Water Wave Mechanics
The theories governing water waves are discussed. Linear wave will be explored in detail, and aspects of nonlinear waves will also be presented.
Prerequisite: 535.119 Fluid Mechanics or equivalent.

560.782 Advanced Ocean Hydrodynamics
This course explains the fundamentals of fluid mechanics in the context of naval architecture and ocean/science engineering, with an emphasis on topics selected from potential flow, added mass, model testing, lifting surfaces, and others.
Prerequisite: 535.119 Fluid Mechanics or equivalent.

560.756 Earthquake Engineering
Topics for this course include plate tectonics, seismicity of the Earth, and engineering seismology—including quantification and classification of earthquake ground motions, dynamics of structures subjected to earthquake loads, design spectra, building code provisions, design concepts and detailing, soil-structure interaction, and response of special structures.
Corequisite: 560.752.

560.757 Random Fields
This course covers stochastic field theory, as applied to one-, two-, and n-dimensional random processes; descriptors of homogeneous and non-homogeneous random fields; study of load average processes; and review of other topics in random field theory and applications.

560.758 Random Vibration
This course discusses random process theory, modeling of stationary and non-stationary excitations, and prediction of response of single- and multi-degree-of-freedom systems and continuous systems.
Prerequisite: 560.752 or equivalent.

560.760 Structural Stability
Topics covered by this course include concepts of stability of equilibrium; stability criteria; work, energy, and variational methods; elastic buckling of columns, beams, frames, and plates; and an introduction to inelastic and dynamic buckling.
Prerequisite: 560.445, 560.455, or equivalent.

560.780 Coastal Engineering
This course provides an overview of coastal processes and their influence on engineering at the shoreline, including waves and currents, equilibrium beach profiles, littoral transport, shoreline modeling, and the behavior of tidal inlets. The impact of structures on the coastline is discussed as well.

560.781 Introduction to Water Wave Mechanics
The theories governing water waves are discussed. Linear wave will be explored in detail, and aspects of nonlinear waves will also be presented.
Prerequisite: 535.119 Fluid Mechanics or equivalent.

560.782 Advanced Ocean Hydrodynamics
This course explains the fundamentals of fluid mechanics in the context of naval architecture and ocean/science engineering, with an emphasis on topics selected from potential flow, added mass, model testing, lifting surfaces, and others.
Prerequisite: 535.119 Fluid Mechanics or equivalent.

565.430 Structural Design with Timber, Masonry, and Other Materials
This course offers a review of the current requirements and techniques for the design of modern structures using materials such as engineered brick and concrete masonry, timber, aluminum, and plastics. Relevant design specifications and criteria are also included.
Prerequisite: 565.105 Theory of Structures I or 560.301 Theory of Structures. In addition, one previous design course is preferred.

565.605 Advanced Reinforced Concrete Design
This intensive course covers reinforced concrete materials and specifications and includes the following topics: conception, analysis, and design of continuous beams and frames; building; bridges and shells; elements theory, with emphasis on the ultimate strength method; precast and prestressed concrete; and special topics.
Prerequisite: 565.126 Structural Design II or 560.325 Concrete Structures.

565.620 Advanced Steel Design
This course examines advanced designs of structural steel building, including consideration of hot-rolled and cold-formed steel shapes and overall concepts of the structural system.
Prerequisite: 565.125 Structural Design I or 560.320 Steel Structures.

565.625 Advanced Foundation Design
This course covers performance requirements and review of soil mechanics; laboratory testing, subsurface investigation, and in situ testing; bearing capacity and settlements of shallow foundations; design of spread footings and mat foundations; axial capacity of deep foundations; settlements of deep foundations; lateral capacity of deep foundations; weak, compressible, and expansible soils; earth pressure theories; and cantilever and sheet-pile retaining structures.
Prerequisites: 565.475 Advanced Soil Mechanics.

565.630 Prestressed Concrete Design
Topics include prestressed concrete materials, prestressing systems, and loss of prestress; analysis and design of section for flexure, shear, torsion, and compression; and consideration of partial prestress, composite sections, and slabs.
Prerequisite: 565.126 Structural Design II or 560.325 Concrete Structures.

565.605 Advanced Reinforced Concrete Design
This intensive course covers reinforced concrete materials and specifications and includes the following topics: conception, analysis, and design of continuous beams and frames; building; bridges and shells; elements theory, with emphasis on the ultimate strength method; precast and prestressed concrete; and special topics.
Prerequisite: 565.126 Structural Design II or 560.325 Concrete Structures.

565.620 Advanced Steel Design
This course examines advanced designs of structural steel building, including consideration of hot-rolled and cold-formed steel shapes and overall concepts of the structural system.
Prerequisite: 565.125 Structural Design I or 560.320 Steel Structures.

565.625 Advanced Foundation Design
This course covers performance requirements and review of soil mechanics; laboratory testing, subsurface investigation, and in situ testing; bearing capacity and settlements of shallow foundations; design of spread footings and mat foundations; axial capacity of deep foundations; settlements of deep foundations; lateral capacity of deep foundations; weak, compressible, and expansible soils; earth pressure theories; and cantilever and sheet-pile retaining structures.
Prerequisites: 565.475 Advanced Soil Mechanics.

565.630 Prestressed Concrete Design
Topics include prestressed concrete materials, prestressing systems, and loss of prestress; analysis and design of section for flexure, shear, torsion, and compression; and consideration of partial prestress, composite sections, and slabs.
Prerequisite: 565.126 Structural Design II or 560.325 Concrete Structures.

61
565.635 Ground Improvement Methods
This course addresses the selection, cost, design, construction, and monitoring of ground improvement methods for problematic soils and rock. Ground improvement methods covered include wick drains, micropiles, lightweight fill materials, soil nailing, mechanically stabilized slopes and walls, grouting, stone columns, dynamic compaction, and soil mixing.
Prerequisite: 560.330 Foundation Design and 560.475.
Staff

565.645 Marine Geotechnical Engineering
This course introduces students to soil mechanics in the marine environment. Topics covered include the nature of marine sediments, soil behavior due to cyclic loading, marine geotechnical investigations, shallow foundations and deadweight anchors, pile foundations and anchors, penetration and breakout of objects on the seafloor, marine slope stability, soft ground improvement, marine dredging, and project planning.
Prerequisite: 565.121 Soil Mechanics or 560.305 Soil Mechanics.
Hudson

565.650 Port and Harbor Engineering
Planning and engineering of ports and harbors has received renewed worldwide interest as the newest super-large cargo ships push the envelope for channel depth and berth space. This course covers planning of marine terminals and small-craft harbors, ship berthing and maneuvering considerations, port navigation, marine structures, inland navigation, marine construction planning, sediment management, and port economics. A field trip to the Port of Baltimore provides practical application of course material and shows students firsthand the unique challenges of engineering on the waterfront.
Staff

565.670 Coastal Structures
This course covers the practical design and analysis of seawalls, breakwaters, groins, and jetties. Topics include wave forces, sediment transport, and coastal zone planning.
Prerequisite: 560.780 Coastal Engineering or 560.781 Introduction to Water Waves.
Hudson

565.675 Hydrodynamics of Estuaries
Topics applied to estuaries include tides, shallow water waves, dispersion, sedimentation, salinity stratification and mixing, pollution, and flushing—with a particular emphasis on the dynamics of the Chesapeake Bay.
Prerequisite: 535.119 Fluid Mechanics or equivalent.
Staff

565.742 Soil Dynamics
This course provides a study of soil behavior under dynamic loading conditions, including wave propagation and attenuation, field and laboratory techniques for determining dynamic soil properties and cyclic strength, cyclic stress strain behavior of soils, liquefaction and evaluation of liquefaction susceptibility, nondestructive evaluation of foundation systems, and foundation design for vibratory loadings.
Prerequisite: 560.305 or equivalent.
Note: See earlier description of 560.756.
Staff

565.766 Earthquake Engineering II
This course teaches the principles of seismic resistant design in terms of importance of ductile behavior of materials, members, and structural systems (with emphasis on the seismic “fuse” concept). Seismic design practice for steel and concrete structures per the current U.S. codes will be covered for structural systems that include steel moment frames, steel braced frames, concrete moment frames, concrete shear wall systems, buckling restrained braced frames, and others.
Prerequisite: 565.756 Earthquake Engineering.
Staff

565.770 Fundamentals of Soil Behavior
This course examines microstructural aspects of geotechnical behavior of clays and sands; influence of structure, fabric, and compositional variables on geotechnical properties of soils; fundamentals of overconsolidation, cohesion, friction, and sensitivity; laboratory stress-strain and shear strength behavior of clays and sands; critical state theory for clays; factors influencing permeability of soils; anisotropy and geotechnical properties of soils; and influence of pollutants on mechanical properties of clays.
Prerequisite: 560.305.
Anandarajah

565.784 Bridge Design
Topics covered by this course include the history, aesthetics, and classification of bridges, along with the design and engineering of modern steel and concrete highway bridges.
Herman

565.800-802 Independent Study in Civil Engineering
Permission of instructor required.
Staff
Computer Science

The proliferation of computers and the expanding scope of information technology have affected virtually every aspect of human society. As a discipline, computer science is concerned with the theory, analysis, design, and implementation of processes that describe and transform information. With roots in mathematics and engineering, computer science uses formal techniques and methodologies of abstraction to create models that can be automated to solve real-world problems.

The Master of Science in Computer Science program is designed to appeal to a broad range of individuals. The program balances theory with practice, offers an extensive set of traditional and state-of-the-art courses, and provides the necessary flexibility to accommodate students with various backgrounds. As a result, the program will appeal to computer professionals with undergraduate degrees in computer science seeking to broaden or deepen their understanding of the discipline as well as to scientists and engineers who wish to gain deeper insights into the field of computing.

Courses are offered across a wide variety of topic areas, including distributed computing, software engineering, information assurance, data communications and networking, bioinformatics, database systems, artificial intelligence, human-computer interaction, systems, and theory. Research and development interests of the faculty span the entire spectrum of computer science.

Students may take courses at the Applied Physics Laboratory, the Montgomery County Campus, the Dorsey Center, and online. Extensive computing facilities are available and can be reached from any of the sites or from home. A variety of software systems, applications, development tools, and specialized lab facilities are also supported.

Program Committee

Ralph D. Semmel, Program Chair
Principal Professional Staff
Applied Physics Laboratory

Robert S. Grossman, Program Vice Chair
Principal Professional Staff
Applied Physics Laboratory

Eleanor Boyle Chlan, Associate Program Chair
Senior Lecturer in Computer Science
Whiting School of Engineering

Marty Hall
President
Coreservlets.com, Inc.

Thomas A. Longstaff
Senior Professional Staff
Applied Physics Laboratory

Horace Malcom
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must have received a grade of A or B in each of the prerequisite undergraduate computer science courses. Applicants must meet the general requirements for admission to a graduate program, as stated in this catalog. In addition, computer science master’s degree candidates must have taken one year of calculus, a course in programming using a modern programming language such as Java or C++, a course in data structures, a course in computer organization, and a mathematics course beyond calculus (e.g., discrete mathematics, linear algebra, or differential equations). This is summarized below:

I. Computer Science Courses:
 1. Introduction to Programming Using Java or C++—one term
 2. Data Structures—one term
 3. Computer Organization—one term

II. Mathematics Courses:
 1. One year of calculus—two semesters or three quarters
 2. Additional mathematics course beyond calculus—one term

Applicants who have not taken the prerequisite undergraduate courses may satisfy admission requirements by completing the specified courses with grades of A or B. The program offers the following undergraduate courses, which may be taken as needed to satisfy the computer science prerequisites and the requirement for a mathematics course beyond calculus:

 605.201 Introduction to Programming Using Java
 605.202 Data Structures
 605.203 Discrete Mathematics
 605.204 Computer Organization
Telecommunications and Networking Option

Computer science students may elect a telecommunications and networking option by taking seven courses in telecommunications and networking from the Computer Science and Electrical and Computer Engineering programs. A maximum of three of those courses can be from the electrical and computer engineering area. Students are strongly encouraged to take courses from both the computer science and electrical and computer engineering areas. Students lacking an electrical engineering background or equivalent must take 625.260 Introduction to Linear Systems as an undergraduate prerequisite for taking electrical and computer engineering telecommunications and networking courses. The computer science and electrical and computer engineering telecommunications and networking courses for the Telecommunications and Networking Option are listed on the Telecommunications and Networking Option page.

Bioinformatics Concentration

Computer science students may pursue a Master of Science in Computer Science with a concentration in bioinformatics or an Advanced Certificate for Post-Master’s Study in Bioinformatics. The advanced certificate requires that students hold a master of science in computer science or a closely related discipline, such as electrical and computer engineering or applied and computational mathematics. The certificate requires six courses, four of which must be graduate courses selected from the Computer Science Bioinformatics Concentration area. For both the concentration and certificate, students may take up to two electives from outside Computer Science. While these electives will typically be selected from programs in the Whiting School of Engineering, advisors can approve bioinformatics courses from other divisions of the university. Students who take electives from other programs must meet the requirements for the selected courses. Before taking any graduate computer science bioinformatics courses, students must have taken 605.205 Molecular Biology for Computer Scientists, or an equivalent course, and received a grade of A or B.

Students interested in a Master of Science in Bioinformatics with a focus on the interpretation of complex biological information and the analysis of sequence data using sophisticated bioinformatics software may be interested in the joint degree program offered by the Whiting School of Engineering and the Zanvyl Krieger School of Arts and Sciences.

Advanced Certificate for Post-Master’s Study in Computer Science

Applicants who have already completed a master’s degree in computer science or a related discipline are eligible to apply for an Advanced Certificate of Post-Master’s Study in Computer Science. Six one-term courses must be completed with grades of A or B within three years. At least five of the six courses must be computer science courses and at least two of the computer science courses must be at the 700-level. Students are allowed to take one elective course, subject to advisor approval.

Course Requirements for Master’s Degree

Ten courses, approved by an advisor, must be completed within five years. At least eight courses must be from the Computer Science curriculum, which includes computer science courses as well as selected courses from Information Assurance and Information Systems and Technology. Three courses must be from the same concentration area and at least two courses must be 700-level. No more than one course with a grade of C, and no course with a grade lower than C, may be counted toward the degree.

While students often choose 10 courses from Computer Science, students may take up to two electives from outside the department. These may be selected from Electrical and Computer Engineering, Applied and Computational Mathematics, and Applied Physics. Electives from other programs require approval of the Computer Science program chair or vice chair. Students who take electives from other programs must meet the specific course and program requirements listed for each course.

Graduate students not pursuing a master’s degree in computer science should consult with their advisors or with the Computer Science special student advisor to determine what courses must be successfully completed before 400- or 700-level computer science courses may be taken. It should be noted that 700-level courses are open only to students who have been admitted with graduate status.

Please refer to the course schedule each term for dates, times, locations, fees, and instructors.

Foundation Courses

All students working toward a master’s degree in computer science are required to take the following three graduate foundation courses before taking other graduate courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>605.401</td>
<td>Foundations of Software Engineer</td>
</tr>
<tr>
<td>605.411</td>
<td>Foundations of Computer Architecture</td>
</tr>
<tr>
<td>605.421</td>
<td>Foundations of Algorithms</td>
</tr>
</tbody>
</table>

Foundation Course Waivers

One or more foundation courses can be waived if a student has received an A or B in equivalent courses. In this case, the student may replace the waived foundation courses with the same number of other graduate computer science courses, and may take these courses after all remaining foundation course requirements have been satisfied.

Graduate Courses by Concentration Areas

The computer science concentration areas including all applicable courses from computer science, information assurance, and information systems and technology are as follows:

I. Software Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>605.401</td>
<td>Foundations of Software Engineer</td>
</tr>
<tr>
<td>605.402</td>
<td>Software Analysis and Design</td>
</tr>
<tr>
<td>605.404</td>
<td>Object Oriented Programming with C++</td>
</tr>
<tr>
<td>605.405</td>
<td>Conceptual Design for High-Performance Systems</td>
</tr>
</tbody>
</table>
Computer Science

Graduate Programs

605.407 Agile Software Development Methods
605.408 Software Project Management
605.701 Software Systems Engineering
605.702 Service-Oriented Architecture
605.703 Component-Based Software Engineering
605.704 Object-Oriented Analysis and Design
605.705 Software Safety
605.707 Software Patterns
605.708 Tools and Techniques of Software Project Management
605.709 Seminar in Software Engineering

II. Systems
605.411 Foundations of Computer Architecture
605.412 Operating Systems
605.414 System Development in the UNIX Environment
605.415 Compiler Design
605.713 Robotics
605.715 Software Development for Real-Time Systems
605.716 Modeling and Simulation of Complex Systems

III. Theory
605.421 Foundations of Algorithms
605.422 Computational Signal Processing
605.423 Applied Combinatorics and Discrete Mathematics
605.424 Logic: Systems, Semantics, and Models
605.426 Image Processing
605.721 Design and Analysis of Algorithms
605.722 Computational Complexity
605.725 Queuing Theory with Applications to Computer Science
605.727 Computational Geometry
605.728 Quantum Computation

IV. Information Assurance
695.401 Foundations of Information Assurance
695.411 Embedded Computer Systems—Vulnerabilities, Intrusions, and Protection Mechanisms
695.421 Public Key Infrastructure and Managing E-Security
695.422 WWW Security
695.423 Intrusion Detection
695.701 Cryptology
695.711 Java Security
695.712 Authentication Technologies
695.721 Network Security
695.791 Information Assurance Architectures and Technologies

V. Database Systems and Knowledge Management
605.441 Principles of Database Systems
605.443 The Semantic Web
605.445 Artificial Intelligence
605.446 Natural Language Processing
605.447 Neural Networks
605.741 Distributed Database Systems
605.744 Information Retrieval
605.745 Reasoning Under Uncertainty
605.746 Machine Learning
605.747 Evolutionary Computation
605.424 Logic: Systems, Semantics, and Models
635.444 XML: Technology and Applications

VI. Bioinformatics
605.451 Principles of Computational Biology
605.452 Biological Databases and Database Tools
605.453 Computational Genomics
605.456 Computational Drug Discovery and Development
605.751 Computational Aspects of Molecular Structure
605.754 Analysis of Gene Expression and High-Content Biological Data
605.755 Systems Biology
605.759 Independent Project in Bioinformatics
605.443 The Semantic Web
605.716 Modeling and Simulation of Complex Systems

VII. Human-Computer Interaction and Visualization
605.462 Data Visualization
605.467 Computer Graphics
605.767 Applied Computer Graphics
635.461 Principles of Human-Computer Interaction

VIII. Data Communications and Networking
(For the Telecommunications and Networking Option in Electrical and Computer Engineering and Computer Science, please see the Telecommunications and Networking page of this catalog.)
605.471 Principles of Data Communications Networks
605.472 Computer Network Architectures and Protocols
605.475 Protocol Design and Simulation
605.477 Internetworking with TCP/IP I
605.478 Cellular Communications Systems
605.771 Wired and Wireless Local and Metropolitan Area Networks
605.772 Network Management
605.773 High-Speed Networking Technologies
605.774 Network Programming
Course Descriptions

605.201 Introduction to Programming Using Java
This course enables students without a background in software development to become proficient programmers who are prepared for a follow-on course in data structures. The Java language will be used to introduce foundations of structured, procedural, and object-oriented programming. Topics include I/O, data types, operators, operands, expressions, conditional statements, iteration, recursion, arrays, functions, parameter passing, and returning values. Students will also be introduced to classes, objects, object references, inheritance, polymorphism, and exception handling. Additional topics include file I/O, searching, sorting, Java Collections, and an introduction to Applets. Students will complete several programming assignments to develop their problem-solving skills and to gain experience in detecting and correcting software errors. *(Not for graduate credit)*

Prerequisite: One year of college mathematics.

Chittargi, Ferguson, Shyamsunder, Smith

605.202 Data Structures
This course investigates abstract data types (ADTs), recursion, algorithms for searching and sorting, and basic algorithm analysis. ADTs to be covered include lists, stacks, queues, priority queues, trees, sets, and dictionaries. The emphasis is on the trade-offs associated with implementing alternative data structures for these ADTs. There will be four or five substantial Java programming assignments. *(Not for graduate credit)*

Prerequisites: One year of college mathematics. 605.201 Introduction to Programming Using Java or equivalent.

Chlan, Resch, Tjaden

605.203 Discrete Mathematics
This course emphasizes the relationships between certain mathematical structures and various topics in computer science. Topics include set theory, graphs and trees, algorithms, propositional calculus, logic and induction, functions, relational algebra, and matrix algebra. *(Not for graduate credit)*

Prerequisites: Differential and integral calculus.

Note: A mathematics course beyond one year of calculus is needed for admission to the graduate Computer Science program. Students who lack this prerequisite can fulfill admission requirements by completing this course with a grade of A or B.

Braxton-Lieber

605.204 Computer Organization
This course examines how a computer operates at the machine level. Students will develop an understanding of the hardware/software interface by studying the design and operation of computing system components. In addition, students will program at the assembly language level to understand internal system functionality. Finally, students will become familiar with the machine representations of programs and data as well as the influence of the underlying hardware system on the design of systems software such as operating systems, compilers, assemblers, and linkers and loaders. *(Not for graduate credit)*

Prerequisite: 605.202 Data Structures is recommended.

Malcom, Schappelle, Snyder, White, Whisnant

605.205 Molecular Biology for Computer Scientists
This course is designed for students who seek to take bioinformatics courses but lack prerequisites in the biological sciences. The course covers essential aspects of biochemistry, cell biology, and molecular biology. Topics include the chemical foundations of life; cell organization and function; the structure and function of macromolecules; gene expression—transcription, translation and regulation; biomembranes and transmembrane transport; metabolism and cellular energetics;
and signal transduction. The application of foundational concepts in developmental biology, neurobiology, immunology, and cancer biology is also introduced. (Not for graduate credit)

Kumar

605.401 Foundations of Software Engineering
Fundamental software engineering techniques and methodologies commonly used during software development are studied. Topics include various life cycle models, project planning and estimation, requirements analysis, program design, construction, testing, maintenance and implementation, software measurement, and software quality. Emphasized are structured and object-oriented analysis and design techniques, use of process and data models, modular principles of software design, and a systematic approach to testing and debugging. The importance of problem specification, programming style, periodic reviews, documentation, thorough testing, and ease of maintenance is covered.

Chavis, Gieszl, Schappelle, Wichmann, Yufik

605.402 Software Analysis and Design
This course emphasizes the concepts, methods, techniques, and tools for analyzing and designing complex software systems. Topics include design principles and strategies, software requirements engineering and analysis, design models, software architectural design, architectural styles, qualities, attributes, notations, documentation, architectural trade-off analysis, formal methods for specification and analysis of software systems, and use of patterns in software design. Design for reuse and evolutionary considerations are also discussed. Students will gain critical insights in current best practices and be able to evaluate the contribution of popular methodologies to requirements analysis and software design.

Olagbemiro

605.404 Object Oriented Programming with C++
This course provides in-depth coverage of object-oriented programming principles and techniques using C++. Topics include classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes, and low-level language features. The course briefly covers the mapping of UML design to C++ implementation and object-oriented considerations for software design and reuse. The course also relates C++ to GUI, databases, and real-time programming. Optional topics include the comparison of C++ with other OOP languages and techniques for interfacing C++ with Java.

Prerequisite: Knowledge of Java or C.

Boon, Demasco, Ferguson, Pierson, Tjaden

605.405 Conceptual Design for High-Performance Systems
Recent data indicates that 80 percent of all new products or services in the U.S. fail within six months or fall significantly short of forecasted success. In the software industry, the average failure rate can be even higher, often entailing massive losses for both the developer, due to disappointing sales or excessive maintenance costs, and the user, due to learning difficulties and other performance problems. This course analyzes a set of issues critical to conceiving and executing a successful software product, with emphasis on complex dynamic applications. Topics are focused on three generic issues: 1) how to collect, organize, and formulate requirements encompassing both software and user performance; 2) how to define product-user interactions and design interfaces to satisfy performance requirements; and 3) how to assess the extent of requirements satisfaction (usability testing and analysis). In complex dynamic applications, user performance is particularly sensitive to design shortcomings. Discussion of such applications will concentrate on models of situation comprehension, image understanding, decision making under uncertainty and other aspects of user performance that need to be considered to recognize and avoid typical design errors.

Yufik

605.407 Agile Software Development Methods
This course emphasizes the rapid realization of system value through disciplined, iterative and incremental software development techniques, and elimination of wasteful practices. Students will study the full spectrum of Agile Methods, including Scrum, Extreme Programming, Lean, Crystal Methods, Dynamic Systems Development Method, and Feature-driven Development. These methods promote teamwork, rich and concise communication, and the frequent delivery of running tested systems containing the highest priority customer features. Agile methods are contrasted with common workplace practices and traditional methods such as CMMI, PMI/PMBOK, and RUP. Examples of agile adoption in industry are discussed. Additional topics in the course include team dynamics, collaboration, software quality, and metrics for reporting progress.

Menner, Olagbemiro

605.408 Software Project Management
This course describes the key aspects of a software project. It begins with the job description of a software manager and then addresses those topics germane to successful software development management including organizing the software development team; interfacing with other engineering organizations (systems engineering, quality assurance, configuration management, and test engineering); assessing development standards; selecting the best approach and tailoring the process model; estimating software cost and schedule; planning and documenting the plan; staffing the effort; managing software cost and schedule during development; risk engineering; and continuous process improvement. Personnel management topics, including performance evaluations, merit planning, skills building, and team building, are also covered. This course introduces software engineers aspiring to become technical team leaders or software project managers to the responsibilities of these roles. For those engineers who have advanced
to a software development leadership position, this course offers formal training in software project management.

Prerequisite: 3-5 years technical work experience is recommended.

Bowers, Winston

605.411 Foundations of Computer Architecture

This course provides a detailed examination of the internal structure and operation of modern computer systems. Each of the major system components is investigated including the following topics: the design and operation of the ALU, FPU, and CPU; microprogrammed vs. hardwired control, pipelining, and RISC vs. CISC machines; the memory system including caches and virtual memory; parallel and vector processing, multiprocessor systems and interconnection networks; superscalar and super-pipelined designs; and bus structures and the details of low level I/O operation using interrupt mechanisms, device controllers, and DMA. The impact of each of these topics on system performance is also discussed. The instruction set architectures and hardware system architectures of different machines are examined and compared. The classical Von Neumann architecture is also compared and contrasted with alternative approaches such as data flow machines and neural networks.

Besse, Malcolm, Snyder, Whisnant

605.412 Operating Systems

The theory and concepts related to operating system design are presented from both developer and user perspectives. Core concepts covered include process management, memory management, file systems, I/O system management including device drivers, distributed systems, and multi-user concepts including protection and security. Process management discussions focus on threads, scheduling, and synchronization. Memory management topics include paging, segmentation, and virtual memory. Students will examine how these concepts are realized in several current open-source operating systems, including Linux. Students will complete several assignments that require the design and implementation of operating system programs using a high-level language.

Noble

605.414 System Development in the UNIX Environment

This course describes how to implement software systems in a UNIX (POSIX-compliant) operating system environment. Students will discuss and learn the complexities, methodologies, and tools in the development of large systems that contain multiple programs. Topics include an overview of the UNIX system and its general-purpose tools, advanced makefile usage, UNIX system calls, UNIX process management, threads, and basic and advanced interprocess communication. Additional topics include source code configuration control, Perl, and debugging techniques.

Prerequisites: Familiarity with UNIX, experience with C++ or C.

Barrett, Ching, Noble

605.415 Compiler Design

This course explores the principles, algorithms, and data structures involved in the design and construction of compilers. Topics include finite-state machines, lexical analysis, context-free grammars, push-down parsers, LR and LALR parsers, other parsing techniques, symbol tables, error recovery, and an introduction to intermediate code generation. Students are provided a skeleton of a functioning compiler in C to which they can add functionality. Several skeletal implementations in C++ as well as a back-end interface to Jasmin are also available. As Jasmin assembles to Java Byte Code, students can develop compilers that target any platform with a Java Virtual Machine, and by the end of the course, students will have developed a compiler for a subset of C.

Ferguson

605.421 Foundations of Algorithms

This follow-on course to data structures (e.g., 605.202) provides a survey of computer algorithms, examines fundamental techniques in algorithm design and analysis, and develops problem-solving skills required in all programs of study involving computer science. Topics include advanced data structures (red-black and 2-3-4 trees, union-find), recursion and mathematical induction, algorithm analysis and computational complexity (recurrence relations, big-O notation, NP-completeness), sorting and searching, design paradigms (divide and conquer, greedy heuristic, dynamic programming, amortized analysis), and graph algorithms (depth-first and breadth-first search, connectivity, minimum spanning trees, network flow). Advanced topics are selected from among the following: randomized algorithms, information retrieval, string and pattern matching, and computational geometry.

Prerequisite: 605.202 Data Structures or equivalent.

Boon, Chlan, Lew, Rodriguez, Sadowsky, Sheppard

605.422 Computational Signal Processing

(formerly 605.723 Signal Processing)

This course introduces computational aspects of signal processing, specifically algorithms for processing digital signals, methods for the design and analysis of signal processing algorithms, architectures for signal processing systems, and areas of application. Topics include signal analysis (signal definition, time and frequency domains, sampling and digitizing, noise and error), systems for signal processing (filters and nonfilters, correlation, adaptation), and algorithms and architectures (fast Fourier transforms, fast convolution, digital filtering, interpolation and resampling, digital signal processors, function evaluation, and computational complexity). Areas of application include communication systems, speech signal processing, and digital media.

Prerequisite: Knowledge of complex numbers and linear algebra.

Sadowsky
605.423 Applied Combinatorics and Discrete Mathematics

Combinatorics and discrete mathematics are becoming increasingly important fields of mathematics because of their extensive applications in computer science, statistics, operations research, and engineering. The purpose of this course is to teach students to model, analyze, and solve combinatorial and discrete mathematical problems. Topics include elements of graph theory, the pigeonhole principle, counting methods, generating functions, recurrence relations and their solution, and the inclusion-exclusion formula. Emphasis is on the application of the methods to problem solving. (This course is the same as 625.417 Applied Combinatorics and Discrete Mathematics.)

Whisnant

605.424 Logic: Systems, Semantics, and Models
(formerly 605.424 Logical Foundations of Computer Science)

The use of predicate logic for modeling information systems is widespread and growing. Knowledge representation, for example, has long been important in artificial intelligence applications, and is now emerging as a critical component of semantic web applications. Similarly, predicate logic is the basis for ontologies and inferential knowledge bases. This course teaches the fundamentals of propositional and predicate logic, with an emphasis on semantics. Modal logic is introduced as a tool to manage non-truth-functional systems, and dynamic logic is introduced to manage potentially inconsistent systems, such as may arise in merging disparate databases or in combining diagnostic models of related systems.

Waddell

605.426 Image Processing
(formerly 605.463 Image Processing)

Fundamentals of image processing are covered, with an emphasis on digital techniques. Topics include digitization, enhancement, segmentation, the Fourier transform, filtering, restoration, reconstruction from projections, and image analysis including computer vision. Concepts are illustrated by laboratory sessions in which these techniques are applied to practical situations, including examples from biomedical image processing.

Prerequisite: Familiarity with Fourier transforms.

Corrigan and Waters

605.441 Principles of Database Systems

This course examines the underlying concepts and theory of database management systems. Topics include database system architectures, data models, query languages, conceptual and logical database design, physical organization, and transaction management. The entity-relationship model and relational model are investigated in detail, object-oriented databases are introduced, and legacy systems based on the network and hierarchical models are briefly described. Mappings from the conceptual level to the logical level, integrity constraints, dependencies, and normalization are studied as a basis for formal design. Theoretical languages such as the relational algebra and the relational calculus are described, and high-level languages such as SQL and QBE are discussed. An overview of file organization and access methods is provided as a basis for discussion of heuristic query optimization techniques. Finally, transaction processing techniques are presented with a specific emphasis on concurrency control and database recovery.

Immer, Kung, Liu, Semmel

605.443 The Semantic Web
(formerly 605.743 The Semantic Web)

The Semantic Web is an activity by the WWW Consortium to create a large set of XML-based languages, along with information on how various tags relate to real-world objects and concepts. This course covers Semantic Web technologies, including RDF (Resource Description Format—a structure for describing and interchanging metadata on the web) and OWL (Web Ontology Language), with domain-specific standards and ontologies (formal specifications of how to represent objects and concepts). Representative applications of RDF, OWL, and ontologies will be discussed. Students will complete a Semantic Web project in an application area of interest to them. Examples will be drawn from several application areas throughout the course, including the life sciences, knowledge management, electronic commerce and web services choreography. Domain-specific implementation strategies such as LSID (Life Sciences Identifier) and various vertical ontologies will be addressed.

Prerequisite: 635.444 XML: Technology and Applications or equivalent.

Addison

605.445 Artificial Intelligence

The incorporation of advanced techniques in reasoning and problem solving into modern, complex systems has become pervasive. Often, these techniques fall within the realm of artificial intelligence. This course focuses on artificial intelligence from an agent perspective, and explores issues of knowledge representation and reasoning. Students will participate in lectures and discussions on various topics, including heuristic and stochastic search, logical and probabilistic reasoning, planning, learning, and perception. Advanced topics will be selected from areas such as robotics, vision, natural language processing, and philosophy of mind. Students will complete problem sets and small software projects to gain hands-on experience with the techniques and issues covered.

Butcher

605.446 Natural Language Processing
(formerly 605.465 Natural Language Processing)

This course introduces the fundamental concepts and techniques of natural language processing (NLP). Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information. The course examines
NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches. It includes treatment of natural languages at the lexical, syntactic, semantic, and pragmatic levels. The course also covers the development of modern NLP systems using statistical and machine learning techniques.

Prerequisite: 605.445 Artificial Intelligence or equivalent.

Kumar

605.447 Neural Networks

This course provides an introduction to concepts in neural networks and connectionist models. Topics include parallel distributed processing, learning algorithms, and applications. Specific networks discussed include Hopfield networks, bidirectional associative memories, perceptrons, feedforward networks with back propagation, and competitive learning networks, including self-organizing and Grossberg networks. Software for some networks is provided. *(This course is the same as 625.438 Neural Networks.)*

Fleischer, Whisnant

605.451 Principles of Computational Biology

This course is an interdisciplinary introduction to computational methods used to solve important problems in DNA and protein sequence analysis. The course focuses on algorithms but includes material to provide the necessary biological background for science and engineering students. Algorithms to be covered include dynamic programming for sequence alignment, such as Smith-Waterman, FASTA, and BLAST; hidden Markov models, such as the forward, Viterbi, and expectation maximization algorithms; a range of gene-finding algorithms; phylogenetic tree construction; and clustering algorithms.

Prerequisites: Familiarity with probability and statistics; working knowledge of Java, C++, or C; 605.205 Molecular Biology for Computer Scientists OR a course in molecular biology and either a course in cell biology or biochemistry.

Przytycka and Rogozin

605.452 Biological Databases and Database Tools

The sequencing of the human genome and intense interest in proteomics and molecular structure have resulted in an explosive need for biological databases. This course surveys a wide range of biological databases and their access tools, and enables students to develop proficiency in their use. Databases introduced include genome and sequence databases such as GenBank and Ensemble, as well as protein databases such as PDB and SWISS-PROT. Tools for accessing and manipulating sequence databases such as BLAST, multiple alignment, Perl, and gene finding tools are covered. Specialized databases such as KEGG and HapMap are surveyed for their design and use. The course also focuses on the design of biological databases and examines issues related to heterogeneity, interoperability, complex data structures, object orientation, and tool integration. Students will create their own small database as a course project and will complete homework assignments using biological databases and database tools.

Prerequisites: 605.205 Molecular Biology for Computer Scientists or equivalent. 605.441 Principles of Database Systems or 410.634 Practical Computer Concepts for Bioinformatics is recommended.

Hobbs

605.453 Computational Genomics

(formerly 605.753 Computational Genomics)

This course focuses on current problems of computational genomics. Students will use bioinformatics software and learn the principles underlying a variety of bioinformatics algorithms. In addition, students will explore and discuss bioinformatics research, and develop software tools to solve bioinformatics problems. Topics include analyzing eukaryotic, bacterial, and viral genes and genomes; finding genes in genomes and identifying their biological functions; predicting regulatory sites; assessing gene and genome evolution; and analyzing gene expression data.

Prerequisites: 605.205 Molecular Biology for Computer Scientists or equivalent, and familiarity with probability and statistics.

Ermolaeva

605.456 Computational Drug Discovery and Development

Recent advances in bioinformatics and drug discovery platforms have brought us significantly closer to the realization of rational drug design and development. Across the pharmaceutical industry, considerable effort is being invested in developing experimental and translational medicine, and it is starting to make a significant impact on the drug discovery process itself. This course examines the major steps of the evolving modern drug discovery platforms, the computational techniques and tools used during each step of rational drug discovery, and how these techniques facilitate the integration of experimental and translation medicine with the discovery/development platforms. The course will build on concepts from a number of areas including bioinformatics, computational genomic/proteomics, in-silico system biology, computational medicinal chemistry, and pharmaceutical biotechnology. Topics covered in the course include comparative pharmacogenomics, protein/antibody modeling, interaction and regulatory networks, QSAR/pharmacophores, ADME/toxicology and clinical biomarkers. Relevant mathematical concepts are developed as needed in the course.

Prerequisite: 605.205 Molecular Biology for Computer Scientists or equivalent.

Kumar

605.462 Data Visualization

This course explores the underlying theory and practical concepts in creating visual representations of large amounts of data. It covers the core topics in data visualization: data representation, visualization toolkits, scientific visualization, medical visualization, information visualization, flow visualization, and volume rendering techniques. The related topics
of applied human perception and advanced display devices are also introduced.

Prerequisite: Experience with data collection/analysis in data-intensive fields or background in computer graphics (e.g., 605.467 Computer Graphics) is recommended.

Chlan

605.467 Computer Graphics
(formerly 605.461 Computer Graphics)

This course examines the principles of computer graphics, with a focus on the mathematics and theory behind 2D and 3D graphics rendering. Topics include graphics display devices, graphics primitives, 2D and 3D transformations, viewing and projection, color theory, visible surface detection and hidden surface removal, lighting and shading, and object definition and storage methods. Practical application of these concepts is emphasized through laboratory exercises and code examples. Laboratory exercises use the C++ programming language and OpenGL on a PC.

Prerequisite: Familiarity with linear algebra.

Nesbitt

605.471 Principles of Data Communications Networks

This course provides an introduction to the field of data communications and computer networks. The course covers the principles of data communications, the fundamentals of signaling, basic transmission concepts, transmission media, circuit control, line sharing techniques, physical and data link layer protocols, error detection and correction, data compression, common carrier services and data networks, and the mathematical techniques used for network design and performance analysis. Potential topics include analog and digital signaling; data encoding and modulation; Shannon channel capacity; synchronous and asynchronous transmission; RS232 physical layer interface standards; FDM, TDM, and STDM multiplexing techniques; inverse multiplexing; analog and digital transmission; V series modem standards; PCM encoding and T1 transmission circuits; LRC/ VRC and CRC error detection techniques; Hamming and Viterbi forward error correction techniques; BSC and HDLC data link layer protocols; Huffman, MNP5, and V.42bis data compression algorithms; circuit, message, packet, and cell switching techniques; ISDN, frame relay, SMDS, and ATM networks; minimum spanning tree, Esau-Williams, and Add network topology optimization algorithms; reliability and availability, TRIB, and queuing analysis topology optimization techniques; and circuit costing.

Boules, Nieporent, Smith

605.472 Computer Network Architectures and Protocols

This course provides a detailed examination of the conceptual framework for modeling communications between processes residing on independent hosts, and the rules and procedures that mediate the exchange of information between two communication processes. The Open Systems Interconnection Reference Model (OSIRM) is presented and compared with TCP/IP and other network architectures. The service definitions and protocols for implementing each of the seven layers of the Reference Model using both OSI and TCP/IP protocols are analyzed in detail. Internetworking among heterogeneous subnets is described in terms of addressing and routing, and techniques for identifying different protocol suites sent over the subnets are explained. The protocol header encoding rules are examined, and techniques for parsing protocol headers are analyzed. The application layer sub-architecture for providing common application services is described, and interoperability techniques for implementing multiprotocol internets are presented. Topics include layering, encapsulation, SAPs, and PDUs; sliding window protocols, flow and error control; virtual circuits and datagrams; routing and congestion control algorithms; internetworking; NSAP and IP addressing schemes; CLNP, IPv4 and the new IPv6 internet protocols; RIP, OSPF, ES-IS, and IS-IS routing protocols; TP4 and TCP transport protocols; dial control, activity management, and the session layer protocol; ASN.1 encoding rules and the presentation layer protocol; application layer structure and the ACSE, CCR, ROSE, and RTSE common application service elements; OSI VT, FTAM, and MOTIS application protocols, TCP/IP TELNET, FTP, and SMTP application protocols; and OSI transitioning tools, multiprotocol networks, and encapsulation, tunneling, and convergence techniques.

Prerequisite: 605.471 Principles of Data Communications Networks.

May, Nieporent

605.475 Protocol Design and Simulation

This course covers the formal design, specification, and validation of computer and network protocols. Design, implementation, and verification of protocols will be illustrated using the latest simulation tools, such as OPNET and NS2. Protocol examples include the latest wired and wireless networks, such as the IEEE 802.11 family, as well as protocols in VoIP, Web 2.0, and network security. The course focuses on protocol specification, structured protocol design, protocol models, and protocol validation. Students will gain hands-on experience using simulation tools to design, validate, and assess protocols.

Prerequisite: 605.471 Principles of Data Communications Networks or equivalent.

Zheng

605.477 Internetworking with TCP/IP I

This course investigates the underlying technology of the Internet. The presentation begins with a survey of distributed applications operating over the Internet, including the Web, electronic mail, VoIP, instant messaging, file transfers and peer-to-peer file sharing. The course investigates the details of the Internet architecture and the TCP/IP protocol suite, covering the protocols that provide communications services to end systems and the management and control protocols that create the Internet from disparate underlying networks and technologies. Communications-related protocols analyzed
in detail include the foundational Internet Protocol (IP), the connection-oriented reliable Transmission Control Protocol (TCP), the connectionless User Datagram Protocol (UDP), and the Real-Time Protocol (RTP) for streaming media. To allow the student to understand the control and management of the Internet, the course analyzes protocols that support naming (DNS), addressing and configuration (DHCP), management (SNMP), and the dynamic IP routing protocols RIP, OSPF, and BGP.

Prerequisite: 605.471 Principles of Data Communications Networks.

DeSimone, Scott

605.478 Cellular Communications Systems

This course introduces the principles of cellular communications systems. Second generation (2G) digital, mobile cellular, and personal communications systems (PCS) concepts are discussed, including the cellular concept, frequency reuse, propagation, multiple access, power control, handoff, and traffic engineering. Limitations of 2G cellular systems are described, and improvements proposed by 2.5G and 3G cellular standards to support high-rate data services are presented. Emphasis is placed on layer 2 and above such as retransmission protocols, medium access control, call processing, interworking, radio resource management (e.g., frequency, time, and power), QoS provisioning, scheduling, and mobility management (e.g., mobile IP). The Wireless Local Area Networking IEEE 802.11 WLAN, the Wireless Metropolitan Area Networking IEEE 802.16 (Fixed and Mobile) WiMAX, and Wireless Personal Area Networking IEEE 802.15 Bluetooth are discussed for their roles in 3G. The Media Independent Handover standard IEEE 802.21 (e.g., integrating WLAN and 3G cellular networks to provide session/service continuity) is also introduced. Cellular standards are examined, including U.S. 2G code-division multiple access (CDMA) IS-95A, 2.5G IS-95B, 3G cdma2000 1x, and 1x-EVDO. Other standards discussed include European 2G time-division multiple access (TDMA) Global System for Mobile communications (GSM), 2.5G General Packet Radio Service (GPRS), 2.5G Enhanced Data Rates for GSM Evolution (EDGE), and 3G wideband-CDMA (W-CDMA).

Prerequisite: 605.471 Principles of Data Communications Networks.

Mishra, Shyy

605.481 Distributed Development on the World Wide Web

This course examines three major topics in the development of applications for the World Wide Web. The first is web site development using HTML and related standards. The second is the implementation of client-side applications using the Java programming language, including user interface development, asynchronous event handling, multithreaded programming, and network programming. Distributed object protocols via RMI or CORBA and distributed database access via JDBC may also be introduced. The third topic is the design of server-side web applications, for which students will examine the underlying web protocol (HTTP), the development of client-side interfaces (e.g., via HTML forms), and the implementation of server-side programs (e.g., via Java servlets or traditional CGI).

Evans, Naber, Shyamsunder, Spiegel

605.484 Collaborative Development with Ruby on Rails

Modern web applications are expected to facilitate collaboration, with user participation being a significant facet of the system. Components such as wikis, blogs, and forums are now commonplace. While feature sets continue to expand, there is continuing pressure to develop and deploy capabilities more quickly to enable organizations to remain competitive. This pressure has led to the development of languages and frameworks geared toward rapid prototyping, with Ruby on Rails being the most popular. Ruby on Rails is a Model-View-Controller (MVC) framework that enables efficient application development and deployment. Techniques such as Convention over Configuration and Object-Relational Mapping with ActiveRecord along with enhanced AJAX support offer a simple environment with significant productivity gains. This code-intensive course introduces Ruby on Rails, the patterns it implements, and its applicability to the rapid development of collaborative applications.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent.

Weimer

605.701 Software Systems Engineering

(formerly 605.706 Software Systems Engineering)

Software Systems Engineering applies engineering principles and the system view to the software development process. The course focuses on the engineering of complex systems that have a strong software component. This course is based on the philosophy that the key to engineering a good software system lies just as much in the process that is followed as in the purely technical regime. The course will show how good a software development process is and how to make a software process better by studying successful techniques that have been employed to produce correct software systems within budget. Topics are explored in a sequence designed to reflect the way one would choose to implement process improvements. These topics include steps to initiate process change, methods to establish control over the software process, ways to specify the development process, methods for quantitative process control, and how to focus on problem prevention. Students will prepare term projects.

Prerequisite: One software engineering course beyond 605.401 Foundations of Software Engineering.

Siegel and Donaldson, White
605.702 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is a way to organize and use distributed capabilities that may be controlled by different owners. SOA provides a uniform means to offer, discover, interact with, and use capabilities to produce desired effects consistent with specified preconditions and requirements. This course describes SOA concepts and design principles, interoperability standards, security considerations, runtime infrastructure, and web services as an implementation technology for SOA. Given the focus on shared capabilities, SOA involves more than technology. Therefore, additional topics will include the impact of SOA on culture, organization, and governance.

Prerequisite: 605.401 Foundations of Software Engineering, 605.481 Distributed Development on the World Wide Web and 605.704 Object-Oriented Analysis and Design or equivalent experience are highly recommended.

John Pole

605.703 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is concerned with the development of software-intensive systems from reusable parts, the development of reusable parts, and with the maintenance and improvement of systems by means of component replacement and customization. In contrast to the opportunistic, “do it when you can” approach, this course is an introduction to the systematic application of CBSE to the development of software intensive systems. This course will cover both the consumer side of the CBSE model (the development of systems from components and frameworks) and the producer side of the CBSE model (developing components, creating design patterns, and building whole frameworks). Though the course will focus primarily on CBSE theory and strategies, students will participate in a class project in which they will act as CBSE consumers or producers. The class project will require basic skills using the Microsoft Windows/Visual Studio.Net platform, which will be covered in an optional set of exercises and tutorials.

Prerequisites: Experience with an object-oriented language such as Java or C++.

605.704 Object-Oriented Analysis and Design

This course describes fundamental principles of object-oriented modeling, requirements development, analysis, and design. Topics include specification of software requirements; object-oriented analysis approaches, including dynamic and static modeling with the Unified Modeling Language (UML v2); object-oriented design; object-oriented reuse, including design patterns; and software implementation concerns. Optional topics include the Systems Modeling Language (SysML), Object-Oriented Systems Engineering Methodology (OOSEM), managing object-oriented projects, and the Object Constraint Language (OCL).

Prerequisite: Experience in object-oriented programming using a language such as Java or C++.

Dемаско, Фергюсон, Пирсон, Шаппелле, Схепэрс

605.705 Software Safety

This course describes how to develop and use software that is free of imperfections that could cause unsafe conditions in safety-critical systems. Systems engineering and software engineering techniques are described for developing “safe-ware,” and case studies are presented regarding catastrophic situations that resulted from software and system faults which could have been avoided. Specific techniques of risk analysis, hazard analysis, fault tolerance, and safety trade-offs within the software engineering paradigm are discussed.

Gieszl

605.707 Software Patterns

Software patterns encapsulate the knowledge of experienced software professionals in a manner that allows developers to apply that knowledge to similar problems. Patterns for software are analogous to the books of solutions that enable electrical engineers and civil engineers to avoid having to derive every new circuit or bridge design from first principles. This course will introduce the concept of software patterns, and explore the wide variety of patterns that may be applied to the production, analysis, design, implementation, and maintenance of software. The format of the course will emphasize the discussion of patterns and their application. Each student will be expected to lead a discussion and to actively participate in others. Students will also be expected to introduce new patterns or pattern languages through research or developed from their own experience. Programming exercises performed outside of class will be used enhance discussion and illustrate the application of patterns.

Prerequisite: 605.404 Object Oriented Programming with C++ or permission of instructor.

Lindberg, Stanchfield

605.708 Tools and Techniques of Software Project Management

This course examines tools and techniques used to lead software-intensive programs. Techniques for RFP analysis and proposal development are explored, and techniques of size estimation (function points, feature points, and lines-of-code estimation) and the use of models such as COCOMO to convert size to effort and schedule are described. In addition, conversion of estimated effort to dollars and the effects of fringe overhead, skill mix profiles, and staffing profiles on total dollar cost are explained. Moreover, techniques for estimating effort and planning software COTS intensive development programs are described, and tools and techniques for measuring process maturity and process efficiency (e.g., CMMi, Lean, Six Sigma, and Kaizen) are addressed. The course also investigates the formation and management of “virtual teams” and techniques that can be used to ensure success in this environment. Finally,
the course addresses topics that require collaboration between the project manager and human resources such as personnel retention strategies, managing unsatisfactory performance, and formal mentoring programs.

Prerequisite: 3-5 years technical work experience is recommended.

Bowers

605.709 Seminar in Software Engineering

This course examines the underlying concepts and latest topics in software engineering. Potential topics include use of Open Source, effective software development techniques such as agile methods, automated code generation, testing strategies, development tools and environments, patterns, metrics in the development process, successful teamwork, and training aspects of CMMI. Each student will select and report on a software engineering topic, do independent topic research, and prepare a paper describing a major software engineering issue. The course is taught using a seminar format in which significant portions of the class period are set aside for students to lead and actively participate in discussions.

Prerequisite: One software engineering course beyond 605.401 Foundations of Software Engineering, or permission of the instructor.

Grossman

605.713 Robotics

This course introduces the fundamentals of robot technology with an emphasis on programming concepts. Robot control, planning, and sensing will be discussed. Topics covered in robot control include robot hardware, the mathematics of robot control (both local and global coordinate systems and the transformations between them), and robot programming. Planning topics include obstacle avoidance, task planning, and navigation. Sensing topics include vision (including binary image processing), robot vision, and knowledge-based vision systems. Students will deepen their understanding through several programming assignments.

Prerequisite: 605.445 Artificial Intelligence is recommended.

Hanson

605.715 Software Development for Real-Time Systems

This course examines the hardware and software technologies behind real-time, embedded computer systems. From smart kitchen appliances to sophisticated flight control for airliners, embedded computers play an important role in our everyday lives. Hardware topics include microprocessors and support devices (e.g., flash, ROM, DMA, timers, clocks, A/D, and D/A), as well as common applications (e.g., servo and stepper motor control, automotive sensors, and voice processing). Software topics focus on unique aspects of embedded programming and include interrupts, real-time control, communication, common design patterns, and special test considerations. The course also explores the unique tools that are used to develop and test embedded systems. Several labs using a popular robotics development system and Java reinforce the concepts presented.

Prerequisite: Programming experience with Java.

Ferguson

605.716 Modeling and Simulation of Complex Systems

This course focuses on the application of modeling and simulation principles to complex systems. A complex system is a large-scale nonlinear system consisting of interconnected or interwoven parts (such as a biological cell, the economy, or an ecological system). The course begins with an overview of complex systems, followed by modeling and simulation techniques based on nonlinear differential equations, networks, stochastic models, cellular automata, and swarm-like systems. Existing software systems will be used to illustrate systems and provide practical experience. During the semester, each student will complete a modeling project of a complex system. While this course is intended for computer science or engineering students interested in modeling any complex system, it may also be taken by Bioinformatics students interested in modeling complex biological systems. Students interested in bioinformatics will study a parallel track exposing them to existing whole cell modeling tools such as E-Cell, COPASI, and BioSpice.

Prerequisites: Knowledge of elementary probability and statistics and previous exposure to differential equations. Students applying this course to the M.S. in Bioinformatics should also have completed at least one Bioinformatics course prior to enrollment.

Note: This course may be counted toward a three course concentration in Bioinformatics.

Addison

605.721 Design and Analysis of Algorithms

In this follow-on course to 605.421 Foundations of Algorithms, design paradigms are explored in greater depth, and more advanced techniques for solving computational problems are presented. Topics include randomized algorithms, adaptive algorithms (genetic, neural networks, simulated annealing), approximate algorithms, advanced data structures, online algorithms, computational complexity classes and intractability, formal proofs of correctness, sorting networks, and parallel algorithms. Students will read research papers in the field of algorithms and will investigate the practicality and implementation issues with state-of-the-art solutions to algorithmic problems. Grading is based on problem sets, programming projects, and in-class presentations.

Prerequisites: 605.421 Foundations of Algorithms or equivalent, and 605.203 Discrete Mathematics or equivalent.

Boon, Sadowsky

605.722 Computational Complexity

This course provides an introduction to the theory of computational complexity. Complexity can be viewed as a practical
version of computability theory: Instead of focusing on the distinction between problems that are solvable and unsolvable, complexity focuses on whether problems are tractable or intractable. This course develops, in both intuitive and rigorous forms, a detailed map of the complexity world by defining the basic complexity characteristics of problems, and then using these characteristics to organize problems into various classes according to the computational resources required for their solution (time and memory). Specific topics include a review of computability and the Church-Turing thesis; discussion of complexity classes such as P, NP, and PSPACE; the theory of NP-completeness; methods for determining the tractability of problems; randomized and approximation algorithms; and applications of complexity in cryptography. As time permits the course will also consider more advanced topics, such as quantum complexity and probabilistically checkable proof systems. All background in theoretical computer science is developed as needed in the course.

Prerequisites: Exposure to algorithm design heuristics and discrete mathematics would be helpful but is not required.

Zaret

605.725 Queuing Theory with Applications to Computer Science

Queues are a ubiquitous part of everyday life; common examples are supermarket checkout stations, help desks, call centers, manufacturing assembly lines, wireless communication networks, and multi-tasking computers. Queuing theory provides a rich and useful set of mathematical models for the analysis and design of service processes for which there is contention for shared resources. This course explores both theory and application of fundamental and advanced models in this field. Fundamental models include single and multiple server Markov queues, bulk arrival and bulk service processes, and priority queues. Applications emphasize communication networks and computer operations, but may include examples from transportation, manufacturing, and the service industry. Advanced topics may vary. (This course is the same as 625.734 Queuing Theory with Applications to Computer Science.)

Prerequisites: Multivariate calculus and a graduate course in probability and statistics such as 625.405 Statistical Methods and Data Analysis or equivalent.

Nickel

605.727 Computational Geometry

This course covers fundamental algorithms for efficiently solving geometric problems, especially ones involving 2D polygons and 3D polyhedrons. Topics include elementary geometric operations; polygon visibility, triangulation, and partitioning; computing convex hulls; Voronoi diagrams and Delaunay triangulations with applications; special polygon and polyhedron algorithms such as point containment and extreme point determination; point location in a planar graph subdivision; and robot motion planning around polygon obstacles. The course covers theory to the extent that it aids in understanding how the algorithms work. Emphasis is placed on implementation, and programming projects are an important part of the course work.

Prerequisite: Familiarity with linear algebra.

Hansen

605.728 Quantum Computation

Polynomial time quantum algorithms, which exploit non-classical phenomena such as superposition and entanglement, have been developed for problems for which no efficient classical algorithm is known. The discovery of these fast quantum algorithms has given rise to the field of quantum computation, an emerging research area at the intersection of computer science, physics, and mathematics. This course provides an introduction to quantum computation for computer scientists. Familiarity with quantum mechanics is not a prerequisite. Instead, relevant aspects of the quantum mechanics formalism will be developed in class. The course begins with a discussion of the quantum mechanics formalism, and of relevant ideas from (classical) computational complexity. It then develops the idea of a quantum computer. This discussion provides the basis for a detailed examination of Shor’s polynomial time algorithm for integer factorization, and Grover’s search algorithm. The course concludes with a discussion of quantum cryptography. Required work will include problem sets and a research project.

Prerequisites: Some familiarity with linear algebra and with the design and analysis of algorithms.

Zaret

605.741 Distributed Database Systems

This course investigates principles of distributed database systems, including design and architecture, query processing, transaction management, locking, recovery, and RAID technology. The course also covers JDBC programming through a variety of interfaces including stand-alone Java programs, Java applets on web browsers, and Common Gateway Interface programs on web servers. The course blends theory with practice, and students will use distributed database concepts to develop JDBC applications and JDBC drivers for implementing web-based distributed databases.

Prerequisites: 605.441 Principles of Database Systems and 605.481 Distributed Development on the World Wide Web or equivalent knowledge of Java and HTML.

Silberberg

605.744 Information Retrieval

A multibillion-dollar industry has grown to address the problem of finding information. Commercial search engines are based on information retrieval: the efficient storage, organization, and retrieval of text. This course covers both the theory and practice of text retrieval technology. Topics include automatic index construction, formal models of retrieval, Internet search, text classification, multilingual retrieval, question answering, and related topics in NLP and computational linguistics. A practical approach is emphasized and students
will complete several programming projects to implement components of a retrieval engine. Students will also give a class presentation based on an independent project or a research topic from the IR literature.

McNamee, Navarro

605.745 Reasoning Under Uncertainty
This course provides an introduction to current research in uncertainty management, which is one of the central research areas within artificial intelligence. The principal focus of the course is on Bayesian networks, which are at the cutting edge of this research. Bayesian networks are graphical models which, unlike traditional rule-based methods, provide techniques for reasoning under conditions of uncertainty in a consistent, efficient, and mathematically sound way. While Bayesian networks are the main topic, the course examines a number of alternative formalisms as well. Specific topics include foundations of probability theory, Bayesian networks (knowledge representation and inference algorithms), belief functions (Dempster-Shafer theory), graphical models for belief functions, and fuzzy logic. Pertinent background in probability and theoretical computer science is developed as needed in the course.

Zaret

605.746 Machine Learning
How can machines improve with experience? How can they discover new knowledge from a variety of data sources? What computational issues must be addressed to succeed? These are questions that are addressed in this course. Topics range from determining appropriate data representation and models for learning, understanding different algorithms for knowledge and model discovery, and using sound theoretical and experimental techniques in assessing performance. Specific approaches covered include statistical techniques (e.g., k-nearest neighbor and Bayesian learning), logical techniques (e.g., decision tree and rule induction), function approximation (e.g., neural networks and kernel methods), and reinforcement learning. The topics are discussed in the context of current machine learning and data mining research. Students will participate in seminar discussions and will complete and present the results of an individual project.

Prerequisite: 605.445 Artificial Intelligence is recommended, but not required.

Sheppard

605.751 Computational Aspects of Molecular Structure
This course focuses on computational methods for studying protein and RNA structure, protein-protein interactions and biological networks. Algorithms for prediction of RNA secondary structure, protein-protein interactions, annotation of protein secondary/tertiary structure and function are studied in depth. Students will apply various computer programs and structure-visualization software to secondary and tertiary protein structure prediction, structure-structure comparison, protein domain classification, annotation of functionally important sites and protein design. Interesting aspects of protein interaction and metabolic networks are also discussed.

Prerequisites: 605.205 Molecular Biology for Computer Scientists or equivalent. 605.451 Principles of Computational Biology is recommended.

Przytycka and Panchenko

605.754 Analysis of Gene Expression and High-Content Biological Data
(formerly 605.754 Analysis of Gene Expression)

The development of microarray technology, rapid sequencing, protein chips, and metabolic data has led to an explosion in the collection of “high-content” biological data. This course explores the analysis and mining of gene expression data and high-content biological data. A survey of gene and protein arrays, laboratory information management systems, data normalization, and available tools is followed by a more in-depth treatment of differential gene expression detection, clustering techniques, pathway extraction, network model building, biomarker evaluation, and model identification. Both clinical and research data will be considered. The student will develop skills in statistical analysis and data mining including statistical detection theory, nonlinear and multiple regression, entropy measurement, detection of hidden patterns in data, heuristic search and learning algorithms. Applied mathematical concepts and biological principles will be introduced, and students will focus on algorithm design and software application for designing and implementing novel ways of analyzing gene, protein and metabolic expression data. Students will complete data analysis assignments individually and in small teams.

Prerequisites: 605.205 or equivalent or a prior course in bioinformatics, a course in probability and statistics, and ability to program in a high-level language.
Note: There are no exams, but programming assignments are intensive. Students in the M.S. Bioinformatics program may take both this course and 410.671 Microarrays and Analysis as the content is largely mutually exclusive.

Addison

605.755 Systems Biology

During the last decade, systems biology has emerged as an effective tool for investigation of complex biological problems, placing emphasis on the analysis of large-scale datasets and quantitative treatment of experimental results. In this course students will explore recent advances in systems biology analysis of intracellular processes. Examples of modeling and experimental studies of metabolic, genetic, signal transduction and cell cycle regulation networks will be studied in detail. The classes will alternate between consideration of network-driven and network element (gene, metabolite, or protein)–driven approaches. Students will learn to use Boolean, differential equations, and stochastic methods of analysis and will become acquainted with several powerful experimental techniques, including basics of microfabrication and microfluidics. As a course project, students will develop a model of a signal transduction or metabolic pathway.

Prerequisites: Courses in molecular biology (605.205 Molecular Biology for Computer Scientists or 410.602 Molecular Biology) and differential equations.

Levchenko

605.759 Independent Project in Bioinformatics

This course is for students who would like to carry out a significant project in bioinformatics as part of their graduate program. The course may be used to conduct minor research, an in-depth literature survey, or a software implementation related to recent developments in the field. Students who enroll in this course are encouraged to attend at least one industry conference in bioinformatics related to their area of study. To enroll in this course, the student must be within two courses of degree completion and must obtain the approval and support of a sponsoring faculty member.

Note: A student may not receive credit for both 605.759 and 605.802 Independent Study in Computer Science II.

Staff

605.767 Applied Computer Graphics

(formerly 605.761 Applied Computer Graphics)

This course examines advanced rendering topics in computer graphics. The course focuses on the mathematics and theory behind 3D graphics rendering. Topics include 3D surface representations including fractal geometry methods; visible surface detection and hidden surface removal; and surface rendering methods with discussion of lighting models, color theory, texturing, and ray tracing. Laboratory exercises provide practical application of these concepts. The course also includes a survey of graphics rendering applications (animation, modeling and simulation, and realistic rendering) and software. Students perform laboratory exercises using the C++ programming language.

Prerequisite: 605.467 Computer Graphics or familiarity with three-dimensional viewing and modeling transformations.

Nesbitt

605.771 Wired and Wireless Local and Metropolitan Area Networks

(formerly 605.771 Local Area Networks)

This course provides a detailed examination of wired and wireless Local and Metropolitan Area Network technologies, protocols, and the methods used for implementing LAN and MAN based enterprise intranets. The structure and operation of the IEEE 802 media access control (MAC) and physical layer protocols are examined in detail. The 802.2 logical link control, 802.3/Ethernet, 802.4 token bus, and the 802.5 token ring protocols are analyzed, and the construction of LAN-based enterprise intranets is examined through a detailed analysis of bridging, routing, and switching techniques. High-speed LAN technologies are discussed through an examination of FDDI, Fast Ethernet, 100VG AnyLAN, ATM LAN Emulation (LANE) and Fibre Channel protocols along with the new standards for Gigabit and 10 Gigabit Ethernet. In addition, the 802.6 DQDB and 802.17 Resilient Packet Ring MAN protocols are discussed. Finally, the new and emerging wireless LAN and MAN standards are examined. The 802.11 (WiFi) wireless LAN and 802.15 (Bluetooth) wireless PAN standards are discussed in detail along with the emerging 802.16 (WiMAX) wireless MAN standard. Topics include Manchester and Differential Manchester encoding techniques; bus, star, and ring topologies; optical fiber, coaxial cable, and UTP media; baseband, broadband, and carrierband bus networks; hubs, switched LANs and full duplex LANs; VLANs and prioritization techniques; transparent and source routing bridge algorithms; packet bursting and carrier extension schemes; wireless spread spectrum and frequency hopping transmission techniques; wireless collision avoidance media access control; and security schemes. Students may use the network lab to configure LAN switches and Cisco routers, as well as to observe the interconnection of LAN networks.

Prerequisite: 605.471 Principles of Data Communications Networks

Hsu, Nieporent

605.772 Network Management

Network management (NM) refers to all the functions, facilities, tools, communications interfaces, protocols, and human resources necessary to monitor and maintain communications networks and plan for their growth and evolution. NM includes investigation of day-to-day operations and administration of the networks. Within this framework, various aspects of managing voice and data networks are covered in this course. Management of specific network elements such as circuit and packet switches, multiplexers, and modems are addressed. The course also covers the concepts and fundamentals of NM standards such as OSI management standards and
605.773 **High-Speed Networking Technologies**

Network evolution has been driven by the need to provide multimedia (i.e., voice, data, video, and imagery) communications in an efficient and cost-effective manner. Data, video, and imagery particularly warrant high-speed and high-capacity network technologies. Moreover, the emergence of the Internet and Internet-based services such as the World Wide Web (WWW) and the current trend toward converging voice and video services have accelerated the demand for high-speed network technologies. This course provides an in-depth understanding of various existing and emerging high-speed networking technologies. Specific technologies covered include Digital Transmission System, Digital Subscriber Line (DSL), Integrated Service Digital Network (ISDN), Frame Relay, Asynchronous Transfer Mode (ATM), Synchronous Optical Network (SONET), Wavelength Division Multiplexing (WDM), Dense WDM (DWDM), and Optical Networking.

Prerequisites: 605.471 Principles of Data Communications Networks.

Krishnan

605.774 **Network Programming**

Emphasis is placed on the theory and practice associated with the implementation and use of the most common process-to-process communications associated with UNIX. The inter-process communications comprise both local and distributed architectures. The distributed communications protocols include those most widely implemented and used: the worldwide Internet protocol suite (the Transmission Control Protocol/Internet Protocol [TCP/IP], and the U.S. government-mandated International Organization for Standardization [ISO] protocol suite). Practical skills are developed, including the ability to implement and configure protocol servers (daemons) and their clients. Students are expected to have working knowledge of UNIX.

Prerequisites: 605.471 Principles of Data Communications Networks, or 605.414 System Development in the UNIX Environment.

Noble

605.775 **Optical Networking Technology**

The Internet has hundreds of millions of users, is growing rapidly, and continues to evolve to accommodate an increasing number of voice, data, video, and imagery applications with diverse service requirements. Internet Protocol (IP) is the primary unifying protocol converging these applications and services over the Internet. The Internet’s evolution has been accompanied by exponentially growing traffic volume on the network infrastructure. Optical networks are ideally suited to carry such large volumes of traffic, and the next generation of optical networks will be optimized for delivery of IP services while providing capacity in the range of terabits per second in a scalable and flexible way to support service such as Voice Over IP (VoIP) and IP Television (IPTV). This course provides an in-depth understanding of existing and emerging optical network technologies. Specific topics covered include basics of fiber optic communications, SONET, DWDM, optical Ethernet, FTTH, FTTH, optical wavelength switching, IP over optical networks, MPLS, and GMPLS. Additional topics that may be discussed include optical network standards, network control and management, static and dynamic service provisioning, optical network design, and future directions.

Prerequisite: 605.773 High-Speed Networking Technologies, or permission of the instructor.

Krishnan

605.777 **Internetworking with TCP/IP II**

This course builds on the foundation established in 605.477, Internetworking with TCP/IP I. Changes are being made in the infrastructure, operation, and protocols of the Internet to provide the performance and services needed for real-time applications. This course first examines the current architecture and operation of the Internet. The classful addressing concept will be introduced and the mapping of Internet addresses to physical addresses is discussed along with the extensions that have been made to the addressing paradigm, including subnet addressing, classless addressing, and network address translation. The performance enhancements being developed to provide quality of service (QoS) over the Internet and to provide faster routing through the use of IP switching techniques are discussed. Techniques for providing multicasting and mobility over the Internet are examined. Security considerations are addressed by examining Virtual Private Networks and the use of IP Security (IPSec) protocols. The next generation IP protocol (IPv6) is introduced, and the changes and enhancements to the IP protocol operation and to the addressing architecture are discussed in detail. Finally, the development of the Voice Over IP (VoIP) application and the convergence of circuit switching and packet switching are discussed. Topics include subnet addressing, CIDR, DHCP, DNS, NAT, IntServ, Diffserv, RSVP, CIP, MPOA, IP Switching, Tag Switching, MPLS, IP Multicast, IGMP, Reliable Multicast, Multicast Routing Protocols, IP Mobility Home Agents and Foreign Agents, Message Tunneling, Proxy and Gratuitous ARP, VPN Tunneling, PPTP, L2F, L2TP and SOCKSv5, VPN security, IPSec, Encapsulating Security Payload header, Authentication Header, Security Association, IPv6 Addressing, IPv6 protocol and extension headers, Neighbor discovery, IPv6 Stateless Address Autoconfiguration, DHCPv6, VoIP, H.323 Gateways and Gatekeeper, SIP, SDP, RTP, MGCP, Megaco/H.248.

Prerequisite: 605.477 Internetworking with TCP/IP I.

Nieporent
605.778 Voice Over IP

The Internet has been growing exponentially and continues to evolve to accommodate an increasingly large number of applications with diverse service requirements. A remarkable aspect of this evolution is the convergence of real-time communications services with traditional data communications services over the Internet. In particular, Internet Telephony, or Voice Over IP, is one of the most promising services currently being deployed. While there are many benefits to Voice Over IP such as cost effectiveness and enhanced features, there exist a number of barriers to the widespread deployment of Internet Telephony. The purpose of this course is to provide in-depth understanding of the concept and operation of Voice Over IP and discuss issues and strategies to address the issues. In this course, students will gain understanding of how to adapt an IP packet network, which is basically designed for data, to provide wide-area voice communications. Topics include telephony fundamentals, Voice Over IP concepts, adapting IP networks to support voice, H.323 and SIP signaling protocols, QoS issues in IP networks, IETF standards, and network management.

Prerequisite: 605.477 Internetworking with TCP/IP I or 605.773 High-Speed Networking Technologies, or significant Internet-related work experience.

Krishnan

605.781 Distributed Objects

This course provides an introduction to the development of client/server and peer-to-peer applications using distributed object technology. The course focuses on special difficulties encountered in the construction of distributed systems and the facilities that object-oriented middleware systems provide to address them. Concepts covered include object discovery, concurrency, and dealing with partial failure, and are applicable to middleware systems in general. Students will develop software in Java and C++ using one or more object-oriented middleware systems.

Prerequisite: 605.404 Object Oriented Programming with C++ or equivalent experience.

Lindberg, Pole

605.782 Web Application Development with Servlets and JavaServer Pages (JSP)

This project-oriented course investigates techniques for building server-side programs for dynamically generated websites, electronic commerce, web-enabled enterprise computing, and other applications that require WWW access to server-based resources. Particular attention will be paid to methods for making server-side applications efficient, maintainable, and flexible. Topics include handling HTTP request information, generating HTTP response data, processing cookies, tracking sessions, designing custom JSP tag libraries, and separating content from presentation through use of JavaBeans components and the MVC (Model 2) architecture.

Prerequisites: 605.481 Distributed Development on the World Wide Web or equivalent Java experience.

Felikson, Shyamsunder, Stafford

605.784 Enterprise Computing with Java

This course covers enterprise computing technologies using Java Enterprise Edition (Java EE). The course describes how to build multi-tier distributed applications, specifically addressing web access, business logic, data access, and applications supporting Enterprise Service technologies. For the web access tier, the focus will be on development using servlets and JSP with an emphasis on integrating the web tier with enterprise applications. For the Business Logic Tier, session beans for synchronous business processing and message-driven beans and timers for asynchronous business processing will be described. The Data Access tier discussion will focus on Java Database Connectivity (JDBC), data access patterns, and the Java Persistence API. Finally, enterprise services will be discussed, including the Java Naming and Directory Interface (JNDI), the Java Message Service (JMS), Remote Method Invocation (RMI), Java Transaction API (JTA), and Java EE Security. Students will build applications using the technologies presented.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent.

Felikson

605.785 Web Services: Framework, Process, and Applications

Web services is a technology, process, and software paradigm to extend the web from an infrastructure that provides services for humans to one that supports business integration over the web. This course presents concepts, features, and architectural models of web services from three perspectives: framework, process, and applications. Students will study the stack of three emerging standard protocols: Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL) and Universal Description, Discovery and Integration (UDDI). Students will also learn how to describe, expose, discover, and invoke software over the web using the Java-centric technologies and APIs for XML for documents processing, JAXP, JAXRPC, SAAJ, JAXM, JAXR, and JAXB. A comparison of Java-based and other web services implementation platforms will also be presented. Finally, the course will review other web services specifications and standards, and it will describe the use of web services to resolve business applications integration issues. WSI Basic Profile and other guidance documents and recommended practices will be discussed in the context of achieving high levels of web services interoperability.

Prerequisites: 635.444 XML: Technology and Applications or equivalent XML and Java programming experience; knowledge of the J2EE platform and programming model is recommended.

Felikson
605.786 Enterprise System Design and Implementation
This course explores enterprise architectures for the development of scalable distributed systems. Effective patterns for distributed data access, MVC-based web tiers, and business logic components are explored as students build complex applications. Factors such as caching and clustering that enable distributed systems to scale to handle potentially thousands of users are a primary focus. In addition, creating a reusable blueprint for an enterprise architecture will be discussed. Applications developed utilizing these concepts are selected from current research topics in information retrieval, data visualization, and machine learning.
Prerequisites: 605.784 Enterprise Computing with Java. 605.707 Software Patterns or equivalent experience is recommended.
M. Cherry and P. Cherry, Weimer

605.787 Rich Internet Applications with Ajax
Using a web browser to access online resources is convenient because it provides universal access from any computer on any operating system in any location. Unfortunately, it often results in a poor user experience because HTML is a weak and noninteractive display language and HTTP is a weak and inefficient protocol. Full-fledged browser-embedded programs (e.g., ActiveX components, Java applets) have not succeeded in penetrating the market adequately, so a new class of applications has grown up that uses only the capabilities already available in most browsers. These applications were first popularized by Google, but have since exploded in popularity throughout the developer community. The techniques to implement them were based on a group of technologies collectively known as Ajax, and the resultant applications were richer than the relatively static pure-HTML-based web applications that preceded them. These applications have become known as Ajax applications, rich Internet applications, or web 2.0 applications. This course will examine techniques to develop and deploy Ajax applications. We will look at the underlying techniques, then explore client-side tools (e.g., scriptaculous), server-side tools (e.g., Direct Web Remoting), and hybrid tools (e.g., the Google Web Toolkit) to simplify the development process. We will also examine closely related technologies such as Flash/Flex and OpenLaszlo, along with the accompanying issues of usability, efficiency, security, and portability.
Prerequisite: 605.782 Web Application Development with Servlets and JavaServer Pages (JSP) or equivalent servlet and JSP experience.
Hall, Shyamsunder

605.791 New Technical Ventures
This course provides a basic understanding of the personal, technical, and market success factors of a new high tech or Internet venture. In addition, the course seeks to prepare potential entrepreneurs to plan a venture, write a business plan, assemble a team, and secure financing. Course topics include the traits of an entrepreneur, market analysis, product positioning, competitive advantage, securing venture capital and funding, corporate partners and joint ventures, building organizations, and managing growth. The course will draw heavily on case studies of technology-based businesses. Students will work individually or in small groups to develop a product concept and a business plan around a new innovation in their concentration area.
Prerequisites: Students should be in the second half of their M.S. degree, and have two years of work experience.
Addison

605.801 Independent Study in Computer Science I
This course permits graduate students in computer science to work with a faculty mentor to explore a topic in depth or conduct research in selected areas. Requirements for completion include submission of a significant paper or project.
Prerequisites: Seven computer science graduate courses including the foundation courses, three concentration area courses, and two courses numbered 605.7xx; or admission to the advanced certificate for post-master’s study. Students must also have permission of a faculty mentor, the student’s academic advisor, and the program chair.

605.802 Independent Study in Computer Science II
Students wishing to take a second independent study in computer science should sign up for this course.
Prerequisite: 605.801 Independent Study in Computer Science I and permission of a faculty mentor, the student’s academic advisor, and the program chair. A student may not receive credit for both 605.759 Independent Project in Bioinformatics and 605.802.
Electrical and Computer Engineering

Electrical and computer engineering is concerned with the use of electrical phenomena for communication, computation, information transformation, measurement, and control. Within these broad categories there exist application areas affecting nearly every facet of society. Electrical engineering draws upon mathematics and the basic sciences of physics, chemistry, and materials in developing the technology leading to new devices and the techniques for describing and designing the processes that take place in electrical systems. The strength of the Hopkins program lies in the active involvement of the faculty in research and development and the faculty’s commitment to fostering students’ understanding of the theory and practice of the discipline.

Within the Whiting School of Engineering, two master’s degree programs are offered in electrical and computer engineering, the Master of Science and the Master of Science in Engineering.

The Master of Science (M.S.) degree is offered through the Engineering for Professionals program and is administered by a program committee. The M.S. program course requirements are described in detail below. It provides graduate education in both the fundamentals of various branches of electrical and computer engineering and in the more specific aspects of current technologies of clear importance. The aim is to serve working engineers primarily; nearly all students participate part-time. All courses are offered during evening hours at the Applied Physics Laboratory, the Dorsey Center, and the Montgomery County Campus. The faculty are drawn from the technical staff of the Applied Physics Laboratory, from government and local industry, and from the full-time faculty of JHU’s Department of Electrical and Computer Engineering.

The areas of interest within the M.S. program span a broad spectrum of specialties. Courses are offered within the general areas of telecommunications, computer engineering, RF and microwave engineering, optical engineering, electronics and the solid state, signal processing, and systems and control.

Students who are interested may, with program approval, plan and complete a thesis project after all other requirements for the master’s degree have been completed. Such students would work with an advisor to conduct independent research in electrical and computer engineering.

The Master of Science in Engineering (M.S.E.) degree is offered and administered by the Department of Electrical and Computer Engineering. Courses are offered during the day and late afternoon hours, mainly at the Homewood campus. Admission and graduation requirements are similar to those of the M.S. program, and interactions are possible. The M.S.E. program provides graduate education in the context of an academic department. The aim is to provide master’s level work in closer contact with full-time faculty and Ph.D. candidates than is the case in the M.S. program. The faculty are drawn primarily from the Department of Electrical and Computer Engineering, but also from the technical staff of the Applied Physics Laboratory. Additional information concerning the M.S.E. program, including the catalog and admission materials, may be obtained from the Department of Electrical and Computer Engineering.

Program Committee

Dexter G. Smith, Program Chair
Principal Professional Staff
Applied Physics Laboratory

Brian K. Jennison, Program Vice Chair
Principal Professional Staff
Applied Physics Laboratory

Charles Alexander
Senior Electrical Engineer
U.S. Department of Defense

Robert S. Bokulic
Principal Professional Staff
Applied Physics Laboratory

Ralph Etienne-Cummings
Associate Professor, Electrical and Computer Engineering
Whiting School of Engineering

Andrew D. Goldfinger
Principal Professional Staff
Applied Physics Laboratory

Jeffrey G. Houser
Electronics Engineer
U.S. Army Research Laboratory

Daniel G. Jablonski
Principal Professional Staff
Applied Physics Laboratory

Jin Ung Kang
Professor, Electrical and Computer Engineering
Whiting School of Engineering

John E. Penn
Electronics Engineer
U.S. Army Research Laboratory

Michael E. Thomas
Principal Professional Staff
Applied Physics Laboratory

Douglas S. Wenstrand
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must meet the general requirements for admission to graduate programs outlined in this catalog. In addition, applicants are expected to have 1) majored in an Accreditation Board for Engineering and Technology (ABET)-accredited
Electrical and Computer Engineering

Graduate Programs

Electrical and computer engineering students who select the telecommunications option must complete the standard program requirements with the following additional requirements. Of the minimum of seven electrical and computer engineering courses, at least five must be telecommunications courses. Of the maximum of three electives, at least two must be from the computer science networking option courses. See the telecommunications and networking program section for a complete description of the option and the courses that apply.

Advanced Certificate for Post-Master’s Study

This certificate is awarded to students who complete six graduate-level courses beyond the master’s degree in an electrical and computer engineering discipline. The program is intended to add depth and/or breadth in the discipline of the student’s master’s degree or a closely related one. All grades for the six courses must be B- or above.

After the review of student’s academic credentials by the admission committee and admittance to the Advanced Certificate for Post-Master’s Study program, each student is assigned an advisor with whom he or she jointly designs a program tailored to individual educational goal.

Students must complete the Advanced Certificate for Post-Master’s Study within three years of the first enrollment in the program.

Course Requirements

Each degree candidate for the M.S. is assigned an advisor. Attainment of the degree requires completion of 10 one-term courses, specifically approved by the advisor, at least seven of which must be in Electrical and Computer Engineering. All courses must be numbered at or above the 400-level. At least four of the 10 required courses must be at the 700-level or above. At most, one course with a grade of C may be used and no course with a grade lower than C. The Electrical and Computer Engineering courses may be selected from among those offered through the M.S. degree program, distinguished by the course prefix 525 and listed below, or from among courses offered in the M.S.E. program of the Department of Electrical and Computer Engineering. These latter are distinguished by the prefix 520 and are listed in the Arts and Sciences/Engineering undergraduate and graduate programs catalog. Limited opportunity is available for replacement of course work by appropriate project work (see the courses 525.801 and 525.802 below).

At most, three of the 10 courses required for the M.S. degree may be selected with advisor approval from outside Electrical and Computer Engineering. Students in the telecommunications and networking option must select at least two from the computer science networking electives. Although most students who desire an elective course select from among the offerings of the Applied and Computational Mathematics, Applied Physics, and Computer Science sections of this catalog, advisors have broad flexibility to approve other suitable courses in science or engineering.

Note: The courses 615.441 Mathematical Methods for Physics and Engineering, 615.442 Electromagnetics, 615.780 Optical Detectors and Applications, and 625.743 Stochastic Optimization and Control are treated as electrical and computer engineering courses rather than as electives.

For convenient reference, the course offerings of the Master of Science in Electrical and Computer Engineering program are listed below in technology groupings. Although most students choose from within one or two groupings, no particular restrictions apply.

I. Telecommunications

525.408 Digital Telephony
525.414 Probability and Stochastic Processes for Engineers
525.416 Communication Systems Engineering
525.418 Antenna Systems
525.420 Electromagnetic Transmission Systems
525.437 Telecommunications Signal Processing
525.438 Introduction to Wireless Technology
525.440 Satellite Communications Systems
525.441 Computer and Data Communication Networks I
525.707 Error Control Coding
525.722 Wireless and Mobile Cellular Communications
525.723 Computer and Data Communication Networks II
525.735 MIMO Wireless Communications
525.736 Smart Antennas for Wireless Communications
525.738 Advanced Antenna Systems
525.747 Speech Processing
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.751</td>
<td>Software Radio for Wireless Communications</td>
</tr>
<tr>
<td>525.754</td>
<td>Wireless Communication Circuits I</td>
</tr>
<tr>
<td>525.755</td>
<td>Wireless Communication Circuits II</td>
</tr>
<tr>
<td>525.759</td>
<td>Image Compression, Packet Video, and Video Processing</td>
</tr>
<tr>
<td>525.761</td>
<td>Wireless and Wireline Network Integration</td>
</tr>
<tr>
<td>525.768</td>
<td>Wireless Networks</td>
</tr>
<tr>
<td>525.771</td>
<td>Propagation of Radio Waves in the Atmosphere</td>
</tr>
<tr>
<td>525.772</td>
<td>Fiber-Optic Communication Systems</td>
</tr>
<tr>
<td>525.776</td>
<td>Information Theory</td>
</tr>
<tr>
<td>525.783</td>
<td>Spread Spectrum Communications</td>
</tr>
<tr>
<td>525.789</td>
<td>Digital Satellite Communications</td>
</tr>
<tr>
<td>525.791</td>
<td>Microwave Communications Laboratory</td>
</tr>
<tr>
<td>525.793</td>
<td>Advanced Communication Systems</td>
</tr>
</tbody>
</table>

Note: Computer science course electives accepted for the telecommunications and networking option are listed on the Telecommunications and Networking page.

II. Computer Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.412</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>525.415</td>
<td>Microprocessor Systems</td>
</tr>
<tr>
<td>525.434</td>
<td>High Speed Digital Design and Signal Integrity</td>
</tr>
<tr>
<td>525.441</td>
<td>Computer and Data Communication Networks I</td>
</tr>
<tr>
<td>525.442</td>
<td>VHDL/FPGA Microprocessor Design</td>
</tr>
<tr>
<td>525.712</td>
<td>Advanced Computer Architecture</td>
</tr>
<tr>
<td>525.723</td>
<td>Computer and Data Communication Networks I</td>
</tr>
<tr>
<td>525.742</td>
<td>System-on-a-Chip FPGA Design Laboratory</td>
</tr>
<tr>
<td>525.743</td>
<td>Embedded Systems Development Laboratory</td>
</tr>
<tr>
<td>525.778</td>
<td>Design for Reliability, Testability, and Quality Assurance</td>
</tr>
<tr>
<td>525.786</td>
<td>Human Robotics Interaction</td>
</tr>
</tbody>
</table>

III. RF and Microwave Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.405</td>
<td>Intermediate Electromagnetics</td>
</tr>
<tr>
<td>525.418</td>
<td>Antenna Systems</td>
</tr>
<tr>
<td>525.420</td>
<td>Electromagnetic Transmission Systems</td>
</tr>
<tr>
<td>525.423</td>
<td>Principles of Microwave Circuits</td>
</tr>
<tr>
<td>525.445</td>
<td>Modern Navigation Systems</td>
</tr>
<tr>
<td>525.448</td>
<td>Introduction to Radar Systems</td>
</tr>
<tr>
<td>525.484</td>
<td>Microwave Systems and Components</td>
</tr>
<tr>
<td>525.736</td>
<td>Smart Antennas for Wireless Communications</td>
</tr>
<tr>
<td>525.738</td>
<td>Advanced Antenna Systems</td>
</tr>
<tr>
<td>525.774</td>
<td>RF and Microwave Circuits I</td>
</tr>
<tr>
<td>525.775</td>
<td>RF and Microwave Circuits II</td>
</tr>
<tr>
<td>525.779</td>
<td>RF Integrated Circuits</td>
</tr>
<tr>
<td>525.787</td>
<td>Microwave Monolithic Integrated Circuit (MMIC) Design</td>
</tr>
<tr>
<td>525.788</td>
<td>Power Microwave Monolithic Integrated Circuit (MMIC) Design</td>
</tr>
<tr>
<td>525.791</td>
<td>Microwave Communications Laboratory</td>
</tr>
<tr>
<td>615.442</td>
<td>Electromagnetics</td>
</tr>
</tbody>
</table>

IV. Photonics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.413</td>
<td>Fourier Techniques in Optics</td>
</tr>
<tr>
<td>525.425</td>
<td>Laser Fundamentals</td>
</tr>
<tr>
<td>525.436</td>
<td>Optics and Photonics Laboratory</td>
</tr>
<tr>
<td>525.491</td>
<td>Fundamentals of Photonics</td>
</tr>
<tr>
<td>525.753</td>
<td>Laser Systems and Applications</td>
</tr>
<tr>
<td>525.756</td>
<td>Optical Propagation, Sensing, and Backgrounds</td>
</tr>
<tr>
<td>525.772</td>
<td>Fiber-Optic Communication Systems</td>
</tr>
<tr>
<td>525.792</td>
<td>Electro-Optical Systems</td>
</tr>
<tr>
<td>525.796</td>
<td>Introduction to High-Speed Electronics and Optoelectronics</td>
</tr>
<tr>
<td>525.797</td>
<td>Advanced Optics and Photonics Laboratory</td>
</tr>
</tbody>
</table>

Note: 525.801 and 525.802 Special Project courses can also be used to allow students to pursue specialized interests in optics.

Electives appropriate to the Photonics Option:

- 615.471 Principles of Optics
- 615.751 Modern Optics
- 615.778 Computer Optical Design
- 615.780 Optical Detectors and Applications
- 615.781 Quantum Information Processing
- 615.782 Optics and MATLAB

Note: 615.800 Applied Physics Project and 615.802 Directed Studies in Applied Physics can also be used to allow the student to pursue specialized interests in optics.

V. Electronics and the Solid State

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.406</td>
<td>Electronic Materials</td>
</tr>
<tr>
<td>525.407</td>
<td>Introduction to Electronic Packaging</td>
</tr>
<tr>
<td>525.421</td>
<td>Introduction to Electronics and the Solid State I</td>
</tr>
<tr>
<td>525.422</td>
<td>Introduction to Electronics and the Solid State II</td>
</tr>
<tr>
<td>525.424</td>
<td>Analog Electronic Circuit Design I</td>
</tr>
<tr>
<td>525.428</td>
<td>Introduction to Digital CMOS VLSI</td>
</tr>
<tr>
<td>525.432</td>
<td>Analog Electronic Circuit Design II</td>
</tr>
<tr>
<td>525.705</td>
<td>Micropower VLSI System Design</td>
</tr>
<tr>
<td>525.713</td>
<td>Analog Integrated Circuit Design</td>
</tr>
<tr>
<td>525.725</td>
<td>Power Electronics</td>
</tr>
<tr>
<td>525.794</td>
<td>Advanced Topics in VLSI Technology</td>
</tr>
</tbody>
</table>

VI. Signal Processing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.419</td>
<td>Introduction to Digital Image and Video Processing</td>
</tr>
<tr>
<td>525.427</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>525.430</td>
<td>Digital Signal Processing Lab</td>
</tr>
<tr>
<td>525.431</td>
<td>Adaptive Signal Processing</td>
</tr>
</tbody>
</table>
Course Descriptions

Please refer to the Course Schedule published each semester for exact dates, times, locations, fees, and instructors.

525.201 Fundamentals of Electrical and Computer Engineering I
This course is intended to prepare students lacking an appropriate background for graduate study in electrical and computer engineering. Fundamental mathematical concepts including calculus, differential equations, and linear algebra are reviewed. Circuit theory for linear and nonlinear devices and components is covered. An introduction to electricity and magnetism is presented along with basic wave propagation theory. Finally, Boolean algebra is studied with applications to digital circuit design and analysis. The course does not count toward the Master of Science in Electrical and Computer Engineering degree. (Not for graduate credit)

525.202 Fundamentals of Electrical and Computer Engineering II
This course is intended to prepare students lacking an appropriate background for graduate study in electrical and computer engineering. Signal and system representations and analysis tools in both continuous-time and discrete-time are covered. Linear time-invariant systems are defined and analyzed. The Fourier transform, the Laplace transform, and the z-transform are treated along with the sampling theorem. Applications to linear feedback systems are studied. Finally, fundamental concepts in probability, statistics, and random processes are considered. The course does not count toward the Master of Science in Electrical and Computer Engineering degree. (Not for graduate credit)

525.405 Intermediate Electromagnetics
This course provides a background in engineering electromagnetics required for more advanced courses in the field. Topics include vector calculus, Poisson’s and Laplace’s equations, Vector potentials, Green’s functions, magnetostatics, magnetic and dielectric materials, Maxwell’s equations, plane wave propagation and polarization, reflection and refraction at a plane boundary, frequency dependent susceptibility functions, transmission lines, waveguides, and simple antennas. Practical examples are used throughout the course.

525.406 Electronic Materials
Materials and the interfaces between them are the key elements in determining the functioning of electronic devices and systems. This course develops the fundamental parameters of the basic solid material types and their relationships to electrical, thermal, mechanical, and optical properties. The application of these materials to the design and fabrication of electronic components is described, including integrated circuits, passive components, and electronic boards, modules, and systems.

Prerequisite: An undergraduate degree in engineering, physics, or materials science; familiarity with materials structures and electronic devices.

525.407 Introduction to Electronic Packaging
Topics include fundamentals of electronic packaging engineering and basic concepts in thermal, mechanical, electrical, and environmental management of modern electronic systems. Emphasis is on high-frequency (and high-speed) package performance and its achievement through the use of advanced analytical tools, proper materials selection, and efficient computer-aided design. Packaging topics include die and lead attachment, substrates, hybrids, surface-mount technology, chip and board environmental protection, connectors, harnesses, and printed and embedded wiring boards.

Prerequisite: An undergraduate degree in a scientific or engineering area, including familiarity with computer-aided design and engineering analysis methods for electronic circuits and systems.
525.408 Digital Telephony
This course examines communication techniques for the transmission in voice of various channels. Topics include characteristics of speech and voice digitization; bandwidth minimization and voice compression; digital modulation and standards; transmission via fiber, terrestrial microwave, and satellite channels; cellular telephone architectures and networks; and digital switching architectures and networks.
Prerequisite: Either an undergraduate degree in electrical engineering or 525.416 Communications Systems Engineering, or consent of the instructor.

Blodgett, Carmody

525.409 Continuous Control Systems
This course examines classical methods of analysis and design of continuous control systems. Topics include system representation by linear time invariant ordinary differential equations, performance measures, sensitivity, stability, root locus, frequency domain techniques, and design methods. Several practical examples are considered. MATLAB is used as a computational tool.
Prerequisite: Matrix theory and linear differential equations.

Palumbo

525.412 Computer Architecture
This course focuses on digital hardware design for all major components of a modern, reduced-instruction-set computer. Topics covered include instruction set architecture; addressing modes; register-transfer notation; control circuitry; pipelining with hazard control; circuits to support interrupts and other exceptions; microprogramming; computer addition and subtraction circuits using unsigned, two's-complement, and excess notation; circuits to support multiplication using Robertson's and Booth's algorithms; circuits for implementing restoring and non-restoring division; square-root circuits; floating-point arithmetic notation and circuits; memory and cache memory systems; segmentation and paging; input/output interfaces; interrupt processing; direct memory access; and several common peripheral devices, including analog-to-digital and digital-to-analog converters.
Prerequisite: An undergraduate-level course in digital hardware design.

Stakem

525.413 Fourier Techniques in Optics
In this course, the study of optics is presented from a perspective that uses the electrical engineer's background in Fourier analysis and linear systems theory. Topics include scalar diffraction theory, Fourier transforming and imaging properties of lenses, spatial frequency analysis of optical systems, spatial filtering and information processing, and holography. The class discusses applications of these concepts in non-destructive evaluation of materials and structures, remote sensing, and medical imaging.
Prerequisites: An undergraduate background in Fourier analysis and linear systems theory.

Young

525.414 Probability and Stochastic Processes for Engineers
This course provides a foundation in the theory and applications of probability and stochastic processes and an understanding of the mathematical techniques relating to random processes in the areas of signal processing, detection, estimation, and communication. Topics include the axioms of probability, random variables, and distribution functions, functions and sequences of random variables; stochastic processes; and representations of random processes.
Prerequisite: An undergraduate degree in electrical engineering.

Fry, R. Lee, Murphy, Ambrose

525.415 Microprocessor Systems
This course applies microprocessors as an integral element of system design. Techniques required for successful incorporation of microprocessor technology are studied and used. Hardware and software design considerations that affect product reliability, performance, and flexibility are covered. Students use hardware to gain familiarity with machine and assembly language for software generation, interfacing to a microprocessor at the hardware level, and emulation to check out system performance.
Prerequisite: Some experience in designing and building digital electronic systems, some familiarity with C programming, and a course in digital systems.

Alexander, R. Lee, Marble

525.416 Communication Systems Engineering
In this course, students receive an introduction to the principles of communication systems engineering. Students examine analog and digital communication including linear (AM, DSB, SSB) and exponential (PM, FM) modulation, sampling, noise and filtering effects, quantization effects, detection error probabilities, and coherent and noncoherent communication techniques.
Prerequisites: A working knowledge of Fourier transforms, linear systems, and probability theory.

Cameron

525.418 Antenna Systems
This course introduces and explains fundamental antenna concepts for both antennas and antenna arrays. Electromagnetic theory is reviewed and applied to antenna elements such as dipoles, loops, aperture antennas, as well as antenna arrays. Antenna analysis is presented from a circuit theory point of view to highlight concepts such as reciprocity and the implications for transmit and receive radiation patterns. The importance of two-dimensional Fourier transforms is explained and applied to aperture antennas. Basic array constraints are examined through case studies of uniform, binomial, and general amplitude distributions. The concept of beam squint is explained through examination of constant-phase versus constant-time phase shifters. The Rotman lens is discussed
as an example of a common beamformer. The class concludes with an explanation of antenna measurements.
Prerequisite: 525.405 Intermediate Electromagnetics or equivalent.

525.419 Introduction to Digital Image and Video Processing

This course provides an introduction to the basic concepts and techniques used in digital image and video processing. Two-dimensional sampling and quantization are studied, and the human visual system is reviewed. Edge detection and feature extraction algorithms are introduced for dimensionality reduction and feature classification. High-pass and bandpass spatial filters are studied for use in image enhancement. Applications are discussed in frame interpolation, filtering, coding, noise suppression, and video compression. Some attention will be given to object recognition and classification, texture analysis in remote sensing, and stereo machine vision.
Prerequisite: 525.427 Digital Signal Processing.

Nasrabadi

525.420 Electromagnetic Transmission Systems

This course examines transmission systems used to control the propagation of electromagnetic traveling waves with principal focus emphasizing microwave and millimeter-wave applications. The course reviews standard transmission line systems together with Maxwell’s equations and uses them to establish basic system concepts such as reflection coefficient, characteristic impedance, input impedance, impedance matching, and standing wave ratio. Specific structures are analyzed and described in terms of these basic concepts, including coaxial, rectangular, and circular waveguides, surface waveguides, striplines, microstrips, coplanar waveguides, slotlines, and finlines. Actual transmission circuits are characterized using the concepts and analytical tools developed.
Prerequisite: An undergraduate degree in electrical engineering or equivalent.

Sequeira, Jablonski

525.421 Introduction to Electronics and the Solid State I

Fundamentals of solid state and device physics are presented. Topics in solid state physics include crystal structure, lattice vibrations, dielectric and magnetic properties, band theory, and transport phenomena. Concepts in quantum and statistical mechanics are also included. Basic semiconductor device operation is described with emphasis on the p-n junction.
Prerequisite: An undergraduate degree in electrical engineering or the equivalent, or, in exceptional cases, upper-division status in an undergraduate electrical engineering degree program.
Note: Interested students should note the availability of the elective course 615.764 Solid State Materials and Devices Laboratory.

Charles

525.422 Introduction to Electronics and the Solid State II

This course reviews the fundamentals of device physics and electronics. Topics in device electronics include bipolar and MOS transistors, Schottky barriers, transferred electron and tunnel devices, semiconductor lasers, and solar cells. Concepts in device structure, modeling, and performance are described.
Prerequisite: 525.421 Introduction to Electronics and the Solid State I or approval of the instructor.
Note: Interested students should note the availability of the elective course 615.764 Solid State Materials and Devices Laboratory.

Charles

525.423 Principles of Microwave Circuits

This course addresses foundational microwave circuit concepts and engineering fundamentals. Topics include electromagnetics leading to wave propagation and generation, the transmission line, and impedance/admittance transformation and matching. Mapping and transformation are presented in the development of the Smith Chart. The Smith Chart is used to perform passive microwave circuit design. Microwave networks and s-matrix are presented; Mason’s Rules are introduced. Circuits are physically designed using microstrip concepts, taking into consideration materials properties, connectors, and other components.

Abita

525.424 Analog Electronic Circuit Design I

This course examines the use of passive and active components to perform practical electronic functions. Simple circuits are designed and evaluated emphasizing the characteristics and tolerances of actual components. Devices studied include diodes and bipolar and field effect transistors. Circuit designs are studied in relation to the device characteristics, including small signal amplifiers and oscillators and linear power supply and amplifier circuits. SPICE modeling is available to students.
Prerequisites: Undergraduate courses in electricity and magnetism, circuit theory, and linear analysis.

Darlington

525.425 Laser Fundamentals

This course reviews electromagnetic theory and introduces the interaction of light and matter with an emphasis on laser theory. A fundamental background is established, necessary for advanced courses in optical engineering. Topics include Maxwell’s equations, total power law, introduction to spectroscopy, classical oscillator model, Kramers-Kroenig relations, line broadening mechanisms, rate equations, laser pumping and population inversion, laser amplification, laser resonator design, and Gaussian beam propagation.
Prerequisite: 525.405 Intermediate Electromagnetics or equivalent.
525.427 Digital Signal Processing

Basic concepts of discrete linear shift-invariant systems are emphasized, including sampling, quantization, and reconstruction of analog signals. Extensive coverage of the Z-transform, discrete Fourier transform, and fast Fourier transform is given. An overview of digital filter design includes discussion of impulse invariance, bilinear transform, and window functions. Filter structures, finite length register effects, roundoff noise, and limit cycles in discrete-time digital systems are also covered.

Prerequisite: A working knowledge of Fourier and Laplace transforms.

Ambrose, C. L. Edwards, M. L. Edwards

525.428 Introduction to Digital CMOS VLSI

The objective of this course is to familiarize the student with the process of implementing a digital system as a full custom, integrated circuit. Upon completion, the student will be capable of completing skills to perform basic VLSI design from circuit concept to mask layout and simulation. Students will have the opportunity to have their projects fabricated at no cost through the MOSIS educational program. Topics include device fabrication, mask layout, introductory MOSFET physics, standard CMOS logic design, hierarchical IC design, and circuit simulation. Students will design, simulate, and do mask level layout of a circuit using a modern CMOS process.

Prerequisite: A course in digital design.

Martin

525.430 Digital Signal Processing Lab

This course builds on the theory of digital signal processing. Opportunities are provided to work on specific applications of digital signal processing involving filtering, de-convolution, spectral estimation, and a variety of other techniques. Students may also suggest their own laboratory topics. Laboratory work involves developing signal processing systems on a personal computer and using them with both real and simulated data. Questions related to hardware realizations are also considered.

Prerequisite: 525.427 Digital Signal Processing.

Fry

525.431 Adaptive Signal Processing

This course examines adaptive algorithms (LMS, sequential regression, random search, etc.) and structures (filters, control systems, interference cancellers), and properties and uses of performance surfaces. Adaptive systems are implemented as part of the course work. Problem exercises and a term project require computer use.

Prerequisite: 525.427 Digital Signal Processing. Some knowledge of probability helpful.

Costabile

525.432 Analog Electronic Circuit Design II

This course extends the fundamental concepts of practical electronic circuit design developed in the course 525.424 Analog Electronic Circuit Design I. The general feedback method is reviewed. Students examine a wide range of devices, including operational amplifiers, A/D and D/A converters, switching regulators, and power supplies. Applications include low noise amplification, sensor conditioning, nonlinear transfer functions and analog computation, and power control.

Prerequisite: 525.424 Analog Electronic Circuit Design I or permission of the instructor.

Darlington

525.434 High Speed Digital Design and Signal Integrity

This course will discuss the principles of signal integrity and its applications in the proper design of high-speed digital circuits. Some of the topics discussed are the following: the definition and fundamentals of signal integrity, the fallacies believed by digital designers, ground/power planes, PCI series termination resistors, simulation software and signal integrity, ground bounce calculations, power bus noise, high-speed return signals, transmission lines, gate delay, differential pair skew, bypass capacitor layout, cable shield grounding, power-ground source impedance, open drain lines, series termination, equivalent circuit source impedance, terminators, crosstalk and SSO noise, gigabit ethernet specification, and short transmission line model.

Prerequisite: Thorough knowledge of digital design and basic circuit theory.

Eaton

525.436 Optics and Photonics Laboratory

The objective of this course is to develop laboratory skills in optics and photonics by performing detailed experimental measurements and comparing these measurements to theoretical models. Error analysis is used throughout to emphasize measurement accuracy. A partial list of topics includes geometric optics, optical properties of materials, diffraction, interference, polarization, nonlinear optics, fiber optics, nonlinear fiber optics, optical detectors (pin, APD, PMT), optical sources (lasers, blackbodies, LEDs), phase and amplitude modulators, lidar, fiber-optic communications, and IR radiometry. The specific experiments will depend on hardware availability and student interest.

Prerequisite: 525.491 Fundamentals of Photonics or 615.751 Modern Optics or equivalent.

Sova, Terry

525.437 Telecommunications Signal Processing

This course integrates and extends the fundamental concepts in communications and signal processing to telecommunication signal processing (TSP). Analysis and design methods are developed and compared for several theoretical and practical TSP systems. Topics include data and voice communications, echo cancellers and suppressors, channel filter banks, adaptive arrays, transmultiplexers, delta/sigma modulation, and speech compression. Students examine industrial appli-
Electrical and Computer Engineering

Graduate Programs

525.416 Communication Systems Engineering
Engineers and 525.416 Communication Systems Engineering by enabling design reuse and simplifying custom circuit design. The design tools are first introduced and used to implement basic circuits. More advanced designs follow, focusing on integrating the FPGA with external peripherals, simple signal processing applications, utilizing soft-core processors, and using intellectual property (IP) cores. Projects will be assigned for course evaluation. Individual projects will be encouraged.

Prerequisite: 525.415 Microprocessor Systems is suggested but not required, as well as an understanding of digital logic fundamentals.

Haber, Meitzler, Wenstrand, Hourani

525.414 Probability and Stochastic Processes for Engineers
This course introduces students to the modern technology involved with commercial wireless communications systems such as digital cellular, personal communications systems (PCS), wireless local area networks (WLAN), code division multiple access (CDMA) systems, and other topics. Various multiple access methods and signal formats are considered. Hardware implementations of system components are presented and analyzed. Modulation and demodulation architectures are introduced and modeled using PC-based tools.

Prerequisites: An undergraduate degree in electrical engineering or the equivalent. Experience with MATLAB and Simulink will be helpful.

Roddewig

525.438 Introduction to Wireless Technology
This course introduces students to the modern technology involved with commercial wireless communications systems such as digital cellular, personal communications systems (PCS), wireless local area networks (WLAN), code division multiple access (CDMA) systems, and other topics. Various multiple access methods and signal formats are considered. Hardware implementations of system components are presented and analyzed. Modulation and demodulation architectures are introduced and modeled using PC-based tools.

Prerequisite: 525.416 Communication Systems Engineering

DeBoy, Carmody

525.440 Satellite Communications Systems
This course presents the fundamentals of satellite communications link design and provides an overview of practical considerations. Existing systems are described and analyzed, including direct broadcast satellites, VSAT links, and Earth-orbiting and deep space spacecraft. Topics include satellite orbits, link analysis, antenna and payload design, interference and propagation effects, modulation techniques, coding, multiple access, and Earth station design.

Prerequisite: 525.416 Communication Systems Engineering.

DeBoy, Carmody

525.441 Computer and Data Communication Networks I
This course provides a comprehensive overview of computer and data communication networks, with emphasis on analysis and modeling. Basic communications principles are reviewed as they pertain to communication networks. Networking principles covered include layered network architecture, data encoding, static and multiaccess channel allocation methods (for LAN and WAN), ARQ retransmission strategies, framing, routing strategies, transport protocols, and emerging high speed networks.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers and 525.416 Communication Systems Engineering, or equivalents.

Nasrabadi, Hanson

525.442 VHDL/FPGA Microprocessor Design
This lab-oriented course covers the design of digital systems using VHSCIC Hardware Description Language (VHDL) and its implementation in Field Programmable Gate Arrays (FPGAs). This technology allows cost-effective unique system realizations by enabling design reuse and simplifying custom circuit design. The design tools are first introduced and used to implement basic circuits. More advanced designs follow, focusing on integrating the FPGA with external peripherals, simple signal processing applications, utilizing soft-core processors, and using intellectual property (IP) cores. Projects will be assigned for course evaluation. Individual projects will be encouraged.

Prerequisite: 525.415 Microprocessor Systems is suggested but not required, as well as an understanding of digital logic fundamentals.

Haber, Meitzler, Wenstrand, Hourani

525.443 Real Time Computer Vision
This course introduces students to real time computer vision through intensive use of the OpenCV open source computer vision framework. Students in the course will learn to quickly build applications that enable computers to “see” and make decisions based on the video stream input from a camera. By the end of the class, the students will be able to build a real time system performing face detection and understand its implementation from in-class laboratory exercises. Topics include camera models and camera calibration; Fourier analysis and image filtering; edge, line and contour detection; Hough transforms; segmentation; optical flow, tracking, and particle filters; elements of machine learning and object recognition; and face detection. Students will be exposed to the mathematical tools that are most useful in the implementation of image processing and computer vision algorithms, from linear algebra, probability theory, and optimization theory.

Prerequisites: Knowledge of C or C++. Recommended prior exposure to probability theory, linear algebra, optimization techniques, and image processing.

Burlina, DeMenthon, Juang

525.445 Modern Navigation Systems
This course explores the use of satellite, terrestrial, celestial, radio, magnetic, and inertial systems for the real-time determination of position, velocity, acceleration, and attitude. Particular emphasis is on the historical importance of navigation systems; avionics navigation systems for high performance aircraft; the Global Positioning System; the relationships between navigation, cartography, surveying, and astronomy; and emerging trends for integrating various navigation techniques into single, tightly coupled systems.

Jablonski

525.446 DSP Hardware Lab
This course develops expertise and insight into the development of DSP processor solutions to practical engineering problems through hands-on experience. Structured exercises using DSP hardware are provided and used by the student to gain practical experience with basic DSP theory and operations. Course focus is on real-time, floating-point applications. This course is intended for engineers having EE or other technical backgrounds who desire to obtain practical experience.
and insight into the development of solutions to DSP problems requiring specialized DSP architectures.

Prerequisite: 525.427 Digital Signal Processing and C programming experience.

525.448 Introduction to Radar Systems

This class introduces the student to the fundamentals of radar system engineering. The radar range equation in its many forms is developed and applied to different situations. Radar transmitters, antennas, and receivers are covered. The concepts of matched filtering, pulse compression, and the radar ambiguity function are introduced, and the fundamentals of radar target detection in a noise background are discussed. Target radar cross section models are addressed, as well as the effects of the operating environment, including propagation and clutter. MTI and pulsed Doppler processing and performance are addressed. Range, angle, and Doppler resolution/accuracy, as well as fundamental tracking concepts, will also be discussed.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers, 525.427 Digital Signal Processing, and a working knowledge of electromagnetics. Familiarity with MATLAB.

525.466 Linear System Theory

This course covers the structure and properties of linear dynamical systems with an emphasis on the single-input, single-output case. Topics include the notion of state-space, state variable equations, review of matrix theory, linear vector spaces, eigenvalues and eigenvectors, the state transition matrix and solution of linear differential equations, internal and external system descriptions, properties of controllability and observability and their applications to minimal realizations, state-feedback controllers, asymptotic observers, and compensator design using state-space and transfer function methods. An introduction to multi-input, multi-output systems is also included, as well as the solution and properties of time-varying systems.

Prerequisites: Courses in matrix theory and linear differential equations.

525.484 Microwave Systems and Components

This course deals with the practical aspects of microwave systems and components. An overview of radar systems (including the effects of both standoff and escort jamming environments) is followed by an introduction to communication systems. The majority of the course treats the linear and nonlinear characteristics of individual components and their relation to system performance. Amplifiers, mixers, antennas, filters, and frequency sources are studied, as well as their interactions in cascade. Performance specification and testing are considered using actual receiver designs as examples. Homework problems for each class reinforce the lecture material and may require use of computer-aided design software provided at the Dorsey Center.

Prerequisite: An undergraduate degree in electrical engineering or equivalent.

525.491 Fundamentals of Photonics

This course provides the essential background in photonics necessary to understand modern photonic and fiber-optic systems. A fundamental background is established, necessary for advanced studies as well. Topics include electromagnetic optics, polarization and crystal optics, guided-wave optics, fiber optics, photons in semiconductors, semiconductors in photon sources and detectors, nonlinear optics, electro-optics, and acousto-optics.

Prerequisite: An undergraduate course in electromagnetic theory.

525.705 Micropower VLSI System Design

This course considers micropower circuits with emphasis at the level of system integration. Topics discussed include mixed digital and analog/digital components on a single chip, A/D and D/A converters, design for testability, and fault tolerance. The course requires a final project involving a small system that is fabricated through MOSIS, as well as laboratory experiments on previously fabricated circuits and small systems.

Prerequisite: 525.713 Micropower Integrated Circuit Design.

525.707 Error Control Coding

This course presents error-control coding with a view toward applying it as part of the overall design of a data communication or storage and retrieval system. Block, trellis, and turbo codes and associated decoding techniques are covered. Topics include system models, generator and parity check matrix representation of block codes, general decoding principles, cyclic codes, an introduction to abstract algebra and Galois fields, BCH and Reed-Solomon codes, analytical and graphical representation of convolutional codes, performance bounds, examples of good codes, Viterbi decoding, BCJR algorithm, turbo codes, and turbo code decoding.

Prerequisites: Background in linear algebra, such as 625.409 Linear Algebra; in probability, such as 525.414 Probability and Stochastic Processes for Engineers; and in digital communications, such as 525.416 Communication Systems Engineering. Familiarity with MATLAB or similar programming capability.

525.712 Advanced Computer Architecture

This course covers topics essential to modern superscalar processor design. A review of pipelined processor design and hierarchical memory design is followed by advanced topics including the identification of parallelism in processes; multiple diversified functional units in a pipelined processor; static, dynamic, and hybrid branch prediction techniques; the Tomasulo algorithm for efficient resolution of true data
dependencies; advanced data flow techniques with and without speculative execution; multiprocessing systems; and multithreaded processors.

Prerequisites: 525.412 Computer Architecture or equivalent.

Cameron

525.713 Analog Integrated Circuit Design

This course focuses on CMOS analog integrated circuits. Topics include devices, subthreshold operation, simple amplifiers, reference circuits and differential amplifiers. Voltage and currentmode techniques are introduced for the implementation of analog signal processing. Circuit analysis methodologies are stressed and complemented with design tools for layout, simulation, and verification. A final project involves the design of a small circuit, with the possibility of fabrication through MOSIS.

Prerequisites: 525.424 Analog Electronic Circuit Design I or equivalent, and 525.428 Introduction to Digital CMOS VLSI.

Martin

525.718 Multirate Signal Processing

Multirate signal processing techniques find applications in areas such as communication systems, signal compression, and sub-band signal processing. This course provides an in-depth treatment of both the theoretical and practical aspects of multirate signal processing. The course begins with a review of discrete-time systems and the design of digital filters. Sample rate conversion is covered and efficient implementations using polyphase filters and cascade integrator comb (CIC) filters are considered. The latter part of the course treats filter bank theory and implementation, including quadrature mirror, conjugate quadrature, discrete Fourier transform, and cosine modulated filter banks along with their relationship to transmultiplexers.

Prerequisites: 525.427 Digital Signal Processing or equivalent and working knowledge of MATLAB.

Jennison

525.721 Advanced Digital Signal Processing

The fundamentals of discrete-time statistical signal processing are presented in this course. Topics include estimation theory, optimal linear filter theory, recursive methods for optimal filters, classical and modern spectrum analysis, adaptive filtering, as well as the singular value decomposition and its applications. Basic concepts of super-resolution methods are described.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers, 525.427 Digital Signal Processing, and the basics of linear algebra. Familiarity with a scientific programming language such as MATLAB.

Sadler, Najmi, Rodriguez

525.722 Wireless and Mobile Cellular Communications

In this course, students examine fundamental concepts of mobile cellular communications and specifics of current and proposed U.S. cellular systems. Topics include frequency reuse; call processing; propagation loss; multipath fading and methods of reducing fades; error correction requirements and techniques; modulation methods; FDMA, TDMA, and CDMA techniques; microcell issues; mobile satellite systems; and IMT-2000.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers or equivalent and 525.416 Communication Systems Engineering.

Zueksdorf

525.723 Computer and Data Communication Networks II

This course emphasizes the mathematical analysis of communication networks. Queuing theory and its applications are covered extensively, including the topics of M/M/1 systems, M/G/1 systems, Burke’s theorem, and Jackson’s theorem. Multiaccess communication is discussed, including the topics of Aloha systems and packet radio networks. Students also explore network routing including the Bellman-Ford algorithm, Dijkstra’s algorithm, and optimal routing.

Prerequisite: 525.441 Computer and Data Communication Networks I.

Hanson

525.724 Introduction to Pattern Recognition

This course focuses on the underlying principles of pattern recognition and on the methods used to develop and deploy applications in the real world. Emphasis is placed on the pattern recognition application development process which includes problem identification, concept development, algorithm selection, system integration, and test and validation. Topics to be covered include the basic concepts of pattern detection and recognition, anomaly detection, feature extraction, data mining, supervised and unsupervised analysis, and data fusion. Recognition algorithms covered will include statistical pattern classifiers, clustering, artificial neural networks, support vector machines, rule-based algorithms, fuzzy logic, genetic algorithms, and others. Classroom examples, homework assignments, and term project topics are drawn from multiple, real-world applications whose data provide a realistic environment within which prototypes are generated and tested by the student.

Prerequisite: 525.414 Probability and Stochastic Processes for Engineers or equivalent. A course in digital signal or image processing is recommended, such as 525.427 Digital Signal Processing, 525.419 Introduction to Digital Image and Video Processing, 525.443 Real Time Computer Vision, or 525.746 Image Engineering.

Baumgart
525.725 **Power Electronics**
This course covers the design and analysis of DC to DC switching converters. Topics include topology selection for various applications, steady state operation including continuous versus discontinuous operation, fundamentals of control loop design including both voltage mode and current mode control, fundamentals of magnetic design including how to minimize losses, input and output filter design, pulse-width modulation chip selection, diode and transistor part selection and the associated effects of part non-idealities on the converter performance, and modeling of the converter. The complete process of converter design and implementation is presented including requirement specification and testing verification needed to evaluate the converter performance such as efficiency, regulation, line rejection, EMI/EMC measurements, and stability measurements. Two labs that will give the student hands-on experience with design and testing of a typical DC to DC converter are part of the course.

Prerequisite: 525.424 Analog Electronic Circuit Design I or equivalent.

Katsis, Marcus, Temkin

525.728 **Detection and Estimation Theory**
This course covers the basic principles of estimation and detection theory. The course starts with a review of probability distributions, multivariate Gaussians, and the central limit theorem. Classical and Bayesian estimation frameworks are formulated and developed, in addition to linear estimation. For detection theory, the use of hypothesis testing, including Bayes, Neyman-Pearson, and minimax approaches are covered, as well as simple and composite hypotheses and binary and multiple hypotheses. Practical problems in radar, communications, and image processing are used as examples throughout the course.

Prerequisite: 525.414 Probability and Stochastic Processes for Engineers or equivalent.

Banerjee

525.735 **MIMO Wireless Communications**
This course presents the fundamental concepts and techniques of multiple-input multiple-output (MIMO) communications over wireless communication channels. MIMO communications, which involve the use of multiple antennas at the transmitter and receiver, employ the use of signal processing techniques to enhance the reliability and capacity of communications systems without increasing the required spectral bandwidth. MIMO techniques are currently used or planned in many commercial and military communications systems. Topics include the derivation and application of the theoretical MIMO communications capacity formula; channel fading and multipath propagation; the concepts of transmit and receive space diversity; space-time block coding, with a special emphasis on Alamouti coding; space-time trellis coding; spatial multiplexing; and fundamentals of OFDM modulation and its relation to MIMO communications. Examples and applications will be presented as well as related MATLAB homework assignments.

Prerequisites: 525.416 Communication Systems Engineering; 525.414 Probability and Stochastic Processes for Engineers, or the equivalent. In addition, a working knowledge of MATLAB is required.

Hampton

525.736 **Smart Antennas for Wireless Communications**
The theory and implementation of smart antennas is explored including electromagnetic principles, array signal processing, random processes, channel characterization, spectral estimation, and adaptive algorithms. The fundamentals of electromagnetics, antenna elements, antenna arrays, sidelobe cancellation, and adaptive antennas methods will be covered. MATLAB will be used for instruction, simulation, and homework.

Prerequisites: 525.414 Probability and Stochastic Processes, 525.418 Antenna Systems. Knowledge of MATLAB will be helpful.

Roddewig, Sud

525.738 **Advanced Antenna Systems**
This course is designed to follow 525.418 Antenna Systems. Advanced techniques needed to analyze antenna systems are studied in detail. Fourier transforms are reviewed and applied to antenna theory and array distributions. The Method of Moments is studied and used to solve basic integral equations employing different basis functions. Green’s functions for patch antennas are formulated in terms of Sommerfeld-like integrals. Techniques such as saddle-point integration are presented. Topics addressed include computational electromagnetics, leaky and surface waves, mutual coupling, and Floquet modes. Students should be familiar with computational electromagnetics (contour integration), Fourier transforms, and electromagnetics from undergraduate studies.

Prerequisite: 525.418 Antenna Systems.

Weiss

525 .742 **System-on-a-Chip FPGA Design Laboratory**
This lab-oriented course will focus on the design of large scale system-on-a-chip (SOC) solutions within field-programmable gate arrays (FPGAs). Modern FPGA densities and commercially available cores enable a single developer to design highly complex systems within a single FPGA. This class will provide the student with the ability to design and debug these inherently complex systems. Topics will include high speed digital signal processing, embedded processor architectures, customization of soft-core processors, interfacing with audio and video sensors, communications interfaces, and networking. The optimum division of algorithms between hardware and software will be discussed, particularly the ability to accelerate software algorithms by building custom hardware. Many
labs will center around a common architecture that includes signal processing algorithms in the FPGA fabric, controlled by an embedded processor that provides user interfaces and network communication. The first section of the course will be spent experimenting with different building blocks for constructing SOCs. Students will spend later class sessions working in teams on self-directed SOC design projects. Industry standard tools will be used.

Prerequisites: 525.442 VHDL/FPGA Microprocessor Design and familiarity with C programming.

Wenstrand, Haber

525.743 Embedded Systems Development Laboratory

This project-based laboratory course involves the development of embedded system prototypes. Typical projects contain combinations of the following components: transducers, analog front ends, microcontrollers and processors, CPLDs, FPGAs, digital signal processors, electrical interfaces, wired or wireless connectivity, printed circuit boards required for integration and test, and software/firmware modules needed to operate designed system. The laboratory activity is a backdrop used to teach key aspects of the development process, such as documentation, realistic use of requirements, design partition, integration strategy, interface design, peer review, risk mitigation, testability, extensibility, distributed development teams, and design strategies to accommodate available resources. Software development topics such as source control, testability, and deployment will also be covered. Instructors will select the design topic for each semester and students will focus their effort on hardware, software, or both, based upon their preference and instructor approval.

Prerequisites: An undergraduate degree in electrical or computer engineering or computer science, 525.412 Computer Architecture, and working knowledge of C or C++ or instructor’s approval.

Houser

525.745 Applied Kalman Filtering

Theory, analysis, and practical design and implementation of Kalman filters are covered, along with example applications to real-world problems. Topics include a review of random processes and linear system theory; Kalman filter derivations; divergence analysis; numerically robust forms; suboptimal filters and error budget analysis; prediction and smoothing; cascaded, decentralized, and federated filters; linearized, extended, second order, and adaptive filters; and case studies in GPS, inertial navigation, and ballistic missile tracking.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers and 525.466 Linear System Theory or equivalents. Knowledge of MATLAB (or equivalent software package).

Samsundar, Watkins

525.746 Image Engineering

Optical, photographic, analog, and digital image processing are highlighted. Topics include image input, output, and processing devices; visual perception; video systems; and fundamentals of digital image enhancement, processing, and understanding. Coding, filtering, transform, restoration, and segmentation techniques are covered, as well as applications to remote sensing and biomedical problems.

Prerequisites: 525.427 Digital Signal Processing or equivalent and knowledge of linear systems.

Bankman, Goldfinger, Miller

525.747 Speech Processing

This course emphasizes processing of the human speech waveform, primarily using digital techniques. Theory of speech production and speech perception as related to signals in time and frequency-domains is covered, as well as the measurement of model parameters, short-time Fourier spectrum, and linear predictor coefficients. Speech coding, recognition, speech synthesis, and speaker identification are discussed. Application areas include telecommunications telephony, Internet VOIP, and man-machine interfaces. Considerations for embedded realization of the speech processing system will be covered as time permits. Several application-oriented software projects will be required.

Prerequisites: 525.427 Digital Signal Processing and 525.414 Probability and Stochastic Processes for Engineers. Background in linear algebra and MATLAB helpful.

Carmody

525.751 Software Radio for Wireless Communications

This course will explore modern software radio technology and implementation. Digital signal processors and field programmable gate arrays have traditional uses in radar and digital signal and system processing. However, with advances in design, they have started to be employed as key components in software radios. We will explore concepts and techniques that are key to implementing traditionally analog processing functions and ASICs in easily reconfigured digital logic. Students will design software radio functions and algorithms and program FPGA development kits using industry standard tools and techniques. A semester project involving software GPS radio or other topics is required.

Prerequisites: 525.438 Introduction to Wireless Technology or 525.416 Communication Systems Engineering; 525.427 Digital Signal Processing; and working knowledge of MATLAB and Simulink.

Roddewig

525.753 Laser Systems and Applications

This course provides a comprehensive treatment of the generation of laser light, its properties, and applications. Topics include specific laser systems and pumping mechanisms, nonlin-
ear optics, temporal and spatial coherence, guided beams, interferometric and holographic measurements, and remote sensing.

Prerequisite: 525.425 Laser Fundamentals.

Bankman, Thomas

525.754 Wireless Communication Circuits I

In this course, students examine modulator and demodulator circuits used in communication and radar systems. A combination of lectures and laboratory experiments address the analysis, design, fabrication, and test of common circuits. Signal formats considered include phase and frequency shift keying, pseudo-random codes, and the linear modulations used in analog systems.

Prerequisites: 525.416 Communication Systems Engineering or 525.484 Microwave Systems and Components or permission of the instructor.

Kaul, McClaning, Tobin, Houser

525.755 Wireless Communication Circuits II

This is a lab-based course in which students will design, build, and test a communications-related system. The nature and extent of the project will be negotiated between the student and instructors during the first week of class. Candidate projects include spread spectrum systems, PSK modulators and demodulators, m-ary FSK modulators and demodulators, and others. Students will be expected to procure any unusual components they require for their project (i.e., specialized ICs, unusual development systems, etc.).

Prerequisites: 525.754 Wireless Communication Circuits I or permission of the instructor. Students are required to assemble circuitry outside the course hours, thus reserving class time for debugging, testing, and instructor interaction.

Kaul, Houser, McClaning, Tobin

525.756 Optical Propagation, Sensing, and Backgrounds

This course presents a unified perspective on optical propagation in linear media. A basic background is established using electromagnetic theory, spectroscopy, and quantum theory. Properties of the optical field and propagation media (gases, liquids, and solids) are developed, leading to basic expressions describing their interaction. The absorption line strength and shape and Rayleigh scattering are derived and applied to atmospheric transmission, optical window materials, and propagation in water-based liquids. A survey of experimental techniques and apparatus is also part of the course. Applications are presented for each type of medium, emphasizing remote sensing techniques and background noise. Computer codes such as LOWTRAN, FASCODE, and OPTIMATR are discussed.

Prerequisites: Undergraduate courses on electromagnetic theory and elementary quantum mechanics. A course on Fourier optics is helpful.

Thomas

525.759 Image Compression, Packet Video, and Video Processing

This course provides an introduction to the basic concepts and techniques used for the compression of digital images and video. Video compression requirements, algorithm components, and ISO Standard video processing algorithms are studied. Image compression components that are used in video compression methods are also identified. Since many of the capabilities of these standards are still being developed and have not been integrated into computer and communication systems, the study of the component technologies will provide guidelines for evaluation and selection when the standards are approved. Topics to be covered include introduction to video systems, Fourier analysis of video signals, properties of the human visual system, motion estimation, basic video compression techniques, video communication standards, and error control in video communications. A mini-project is required.

Prerequisites: 525.427 Digital Signal Processing.

Besar

525.761 Wireless and Wireline Network Integration

This course investigates the integration of wireless and wireline networks into seamless networks. The current telecommunications environment in the U.S. is first discussed, including the state of technology and regulations as they apply to the wireless and wireline hybrid environment. Then each type of these hybrid networks is discussed, including its components, network services, architecture, and possible evolution, as well as important concepts that support the evolution of networks. The integration of wired network advance intelligence, wireless network mobility, and long distance capabilities are shown to provide many new combinations of wired and wireless services to users.

Prerequisite: 525.408 Digital Telephony, 525.416 Communication Systems Engineering, or permission of instructor.

R. Lee

525.762 Signal Processing with Wavelets

This course presents the fundamentals of wavelets as a signal processing tool. Topics include continuous and discrete-time wavelets, time-frequency transient analysis, wavelet bases, wavelet packets, and approximations with wavelets. Applications include signal and image denoising (filtering) and compression. Computer experiments using MATLAB illustrate the techniques studied.

Prerequisites: 525.427 Digital Signal Processing and the basics of linear systems.

Najmi

525.763 Applied Nonlinear Systems

This course provides an introduction to nonlinear systems, including differences between linear and nonlinear systems; mathematical preliminaries; equilibrium points of nonlinear systems; phase plane analysis and limit cycles; stability defi-
525.768 Wireless Networks
This is a hands-on course that integrates teaching of concepts in wireless LANs as well as offering students, in an integrated lab environment, the ability to conduct laboratory experiments and design projects that cover a broad spectrum of issues in wireless LANs. The course will describe the characteristics and operation of contemporary wireless network technologies such as the IEEE 802.11 and 802.11s wireless LANs and Bluetooth wireless PANs. Laboratory experiments and design projects include MANET routing protocols, infrastructure and MANET security, deploying hotspots, and intelligent wireless LANs. The course will also introduce tools and techniques to monitor, measure, and characterize the performance of wireless LANs as well as the use of network simulation tools to model and evaluate the performance of MANETs.

Prerequisites: 525.441 Computer and Data Communication Networks I or 605.471 Principles of Data Communications Networks.

525.770 Intelligent Algorithms
This course investigates several techniques commonly referred to as intelligent algorithms, and takes a pragmatic engineering approach to the design, analysis, evaluation, and implementation of intelligent systems. Fuzzy systems concepts are discussed, and several engineering applications are presented, including fuzzy control and fuzzy estimation and prediction. The role of Expert (rule-based) Systems is discussed within the context of fuzzy systems. In addition, neural networks and genetic algorithms are introduced, and their relationships to fuzzy systems are highlighted. A fuzzy systems computer project must be selected and implemented by the student. Student familiarity of system-theoretic concepts is desirable.

525.771 Propagation of Radio Waves in the Atmosphere
This course examines various propagation phenomena that influence transmission of radio frequency signals between two locations on Earth and between satellite-Earth terminals, with a focus on applications. Frequencies above 30 MHz are considered with emphasis on microwave and millimeter propagation. Topics include free space transmission, propagation, and reception; effects on waves traversing the ionosphere; and attenuation due to atmospheric gases, rain, and clouds. Brightness temperature concepts are discussed, and thermal noise introduced into the receiver system from receiver hardware and from atmospheric contributions is examined. Also described are reflection and diffraction effects by land terrain and ocean, multipath propagation, tropospheric refraction, propagation via surface and elevated ducts, scatter from fluctuations of the refractive index, and scattering due to rain. Atmospheric dynamics are described that contribute to the various types of propagation conditions in the troposphere.

Prerequisite: An undergraduate degree in electrical engineering or equivalent.

525.772 Fiber-Optic Communication Systems
This course investigates the basic aspects of fiber-optic communication systems. Topics include sources and receivers, optical fibers and their propagation characteristics, and optical fiber systems. The principles of operation and properties of optoelectronic components, as well as the signal guiding characteristics of glass fibers, are discussed. System design issues include terrestrial and submerged point-to-point optical links and fiber-optic networks.

Prerequisite: 525.491 Fundamentals of Photonics.

525.774 RF and Microwave Circuits I
In this course, students examine RF and microwave circuits appropriate for wireless communications and radar sensing. It emphasizes the theoretical and experimental aspects of microstrip design of highly integrated systems. Matrix analysis and computer-aided design techniques are introduced and used for the analysis and design of circuits. Circuits are designed, fabricated, and tested, providing a technically stimulating environment in which to understand the foundational principles of circuit development. Couplers, modulators, mixers, and calibrated measurements techniques are also covered.

Prerequisite: 525.423 Principles of Microwave Circuits or equivalent.

525.775 RF and Microwave Circuits II
This course builds upon the knowledge gained in 525.774 RF and Microwave Circuits I. Here there is a greater emphasis on designs involving active components. Linear and power amplifiers and oscillators are considered, as well as stability, gain, and their associated design circuits. The course uses computer-aided design techniques and students fabricate and test circuits of their own design.

Prerequisite: 525.774 RF and Microwave Circuits I.
Prerequisite: 525.414 Probability and Stochastic Processes for Engineers or equivalent.

525.777 Control System Design Methods
This course examines recent multivariable control system design methodologies and how the available techniques are synthesized to produce practical system designs. Both the underlying theories and the use of computational tools are covered. Topics include review of classical control system design and linear system theory, eigenstructure assignment, the linear quadratic regulator, the multivariable Nyquist criterion, singular value analysis, stability and performance robustness measures, loop transfer recovery, H-infinity design, and mu-synthesis. An introduction to nonlinear techniques includes sliding mode control and feedback linearization. Recent papers from the literature are discussed. Each student will be assigned a design project using PC-based design and analysis software.

Prerequisites: 525.466 Linear System Theory and 525.409 Continuous Control Systems or the equivalent.

Kinney

525.778 Design for Reliability, Testability, and Quality Assurance
The design of reliable and testable systems, both analog and digital, is considered at the component, circuit, system, and network levels. Using numerous real-world examples, the trade-offs between redundancy, testability, complexity, and fault tolerance are explored. Although the emphasis is predominantly on electronics, related examples from the aerospace and software industries are included. The concepts of fault lists, collapsed fault lists, and other techniques for reducing the complexity of fault simulation are addressed. A quantitative relationship between information theory, error correction codes, and reliability is developed. Finally, the elements of a practical quality assurance system are presented. In addition to homework assignment, students will conduct an in-depth, quantitative case study of a practical system of personal interest.

Pue

525.779 RF Integrated Circuits
This course covers the RFIC design process focusing on the RF/Microwave portion of RFIC. An overview of digital circuits and digital signal processing will be given along with semiconductor fabrication, device models, and RF/Microwave design techniques using a typical SiGe process. Part of the course will involve student design projects using Analog Office software to design amplifiers, mixers, etc.

Prerequisite: 525.774 RF and Microwave Circuits I or equivalent.

Penn, Wilson

525.780 Multidimensional Digital Signal Processing
The fundamental concepts of multidimensional digital signal processing theory as well as several associated application areas are covered in this course. The course begins with an investigation of continuous-space signals and sampling theory in two or more dimensions. The multidimensional discrete Fourier transform is defined, and methods for its efficient calculation are discussed. The design and implementation of two-dimensional non-recursive linear filters are treated. The final part of the course examines the processing of signals carried by propagating waves. This section contains descriptions of computed tomography and related techniques and array signal processing. Several application oriented software projects are required.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers and 525.427 Digital Signal Processing or equivalents. Knowledge of linear algebra and MATLAB is helpful.

Jennison

525.783 Spread Spectrum Communications
This course presents an analysis of the performance and design of spread-spectrum communication systems. Both direct-sequence and frequency-hopping systems are studied. Topics include pseudonoise sequences, code synchronization, interference suppression, and the application of error-correcting codes. The use of code-division multiple access in digital cellular systems is examined. The relationships between spread spectrum, cryptographic, and error correction systems are explored. The mathematics of pseudorandom sequences used as spreading codes is compared with the mathematics of complex numbers with which students are already familiar.

Prerequisite: 525.416 Communication Systems Engineering.

Jablonski

525.786 Human Robotics Interaction
This course provides an investigation of human-robot interaction, with a focus on advanced man-machine interfaces including neural, EMG, and motion tracking interfaces for controlling the robots and receiving feedback from mechanical actions. The course will also cover human physiology and anatomy, signal processing, intent determination, communications between the human and the robot, haptic feedback and telepresence. It is designed to be a hands-on course with class time spent in the dedicated robotics lab designing interfaces and performing experiments in a virtual integration environment and with robot arms. Additional time in the lab, outside of class time, may be required to complete the course project. Programming for the class will be in MATLAB and Simulink.

Prerequisites: 525.427 Digital Signal Processing, knowledge of linear algebra, and familiarity with MATLAB and Simulink.

Armiger, Lesho
525.787 Microwave Monolithic Integrated Circuit (MMIC) Design

This course is for advanced students who have a background in microwave circuit analysis and design techniques and are familiar with modern microwave computer-aided engineering tools. The course covers the monolithic implementation of microwave circuits on GaAs substrates, including instruction on processing, masks, simulation, layout, design rule checking, packaging, and testing. The first part of the course includes information and assignments on the analysis and design of MMIC chips. The second part consists of projects in which a chip is designed, reviewed, and evaluated in an engineering environment, resulting in a chip mask set that is submitted for foundry fabrication.

Prerequisite: 525.775 RF and Microwave Circuits II.
Penn

525.788 Power Microwave Monolithic Integrated Circuit (MMIC) Design

The Power MMIC course covers additional circuit design techniques applicable to MMICs (and microwave circuits in general). It is an extension of RF and Microwave Circuits I and II and Microwave Monolithic Integrated Circuit (MMIC) Design, though for students with a microwave background, these particular courses are not prerequisites. The topics covered include broadband matching, optimum loads for efficiency and low intermodulation products, odd mode oscillations, details of nonlinear modeling, time domain simulation of nonlinear circuits, and thermal effects. Students do need to have a background in microwave measurements and microwave CAD tools. There is not a project, but there is structured homework involving power MMIC design completed by the student using a foundry library. The course is given in the spring; it is not given every year.

Dawson

525.789 Digital Satellite Communications

This course covers advanced topics in satellite communications systems, with emphasis on digital communications. After a review of basic concepts, the following topics are addressed: the distinctions between digital and nondigital communications systems; reasons for preferring some forms of modulation and coding over others for spacecraft implementation; the relationships between spectrum management, signal propagation characteristics, orbitology, constellation design, and communications system design; the use of spread spectrum (CDMA and frequency-hopping), TDMA, and FDMA architectures; protocol design and usage; GPS; digital audio radio satellites; the use of geostationary satellites for mobile telephone systems; satellite television; and VSAT terminals.

Prerequisites: 525.416 Communication Systems Engineering is required, and 525.440 Satellite Communications Systems is recommended.
Jablonski

525.791 Microwave Communications Laboratory

Concepts involving the design and fabrication of microwave subsystems are introduced in this laboratory course, including image rejection mixers, local oscillators, phase locked loops, and microstrip filters. A communication project is required, such as design and fabrication of an L-band WEFAX (weather facsimile) receiver or a C-band AMSAT (amateur communications satellite) converter. Modern microwave analyzing instruments are used by the students to evaluate the performance of the project subsystems.

Prerequisite: 525.775 RF and Microwave Circuits II or equivalent.
Everett, Fazi

525.792 Electro-Optical Systems

This course covers the analysis and conceptual design of practical electro-optical (EO) systems. Although EO technology is emphasized, the fundamentals of radiometry and optical radiation are also described to provide an understanding of the essential physics, whereas background characterization and atmospheric propagation are only briefly covered. Basic EO system component performance is characterized parametrically for detection, tracking, communications, and imaging. Passive (infrared imaging) and active (laser radar and laser communication) systems are stressed. Components considered in these systems include basic telescopes and optics, focal plane arrays, laser diodes, photodiode receivers, and laser scanners.

Prerequisite: 615.751 Modern Optics or the equivalent.
Boone, Edwards

525.793 Advanced Communication Systems

In this course, students receive an introduction to digital baseband and bandpass modulation and demodulation/detection. Digital communication system performance is then evaluated using link budget analysis. Additional topics may include channel coding, equalization, synchronization, modulation and coding trade-offs, multiplexing, and multiple access.

Prerequisites: 525.414 Probability and Stochastic Processes for Engineers; 525.416 Communication Systems Engineering.
Carmody

525.794 Advanced Topics in VLSI Technology

This course will concentrate on advanced concepts in VLSI design. Additional emphasis will be put on system architecture, circuit analysis, device modeling, simulation, and optimization. Topics include advanced logic techniques, parasitic circuit elements, advanced simulation techniques, temperature effects, and circuit and device performance limits. Additional topics may include low-power/low-energy design techniques, performance limits, radiation effects, and cryogenic VLSI.

Prerequisite: 525.428 Introduction to Digital CMOS VLSI, or equivalent background in digital design.
Martin
525.796 Introduction to High-Speed Electronics and Optoelectronics

This course provides the student with the fundamental concepts needed to address issues in both the design and test of high speed electronic and optical systems. Topics include electronic devices and circuits used at microwave and millimeter frequencies, optical active devices and waveguide technology, electronic and optical pulse generation techniques, high speed packaging design, and testing techniques.

Prerequisite: Undergraduate courses in circuits and systems.

Sova, Vichot

525.797 Advanced Optics and Photonics Laboratory

The objective of this course is to develop advanced experimental techniques in optics and photonics. Students will work in teams of two or three on in-depth optical experiments consisting of multiple parts that include constructing experimental apparatus and developing data acquisition and analysis software. Example experiments include coherent and incoherent laser radar, laser vibrometry, fiber lasers dynamics, high resolution microscopy using Fourier optics, 3D interferometric imaging, optical properties of materials, 10 Gbps WDM fiber communication system, optical tomographic imaging in highly diffuse media, speckle interferometry, mode-locked and soliton lasers, and nonlinear fiber optics. The specific experiments will depend on hardware availability and student interest.

Prerequisite: 525.436 Optics and Photonics Laboratory or equivalent.

Sova, Terry

525.801 Special Project I

In individual cases, special arrangements can be made to carry out a project of significant scope in lieu of a formal course. Further information is available from the program committee chair. Such arrangements are made relatively infrequently. This course number should be used for the first registration of a student in any special project.

Note: To be assured consideration for any term, project proposals should reach the program chair by the end of the mail-in registration period.

525.802 Special Project II

This course number should be used for the second registration of a student in any special project. (See course 525.801 Special Project I for a further description.)

Note: To be assured consideration for any term, project proposals should reach the program chair by the end of the mail-in registration period.

525.803-804 Electrical and Computer Engineering Master’s Thesis

These courses are designed for students in the electrical and computer engineering master’s program who wish to undertake a thesis project after completing eight courses. Students work with an advisor to conduct independent research in ECE leading to a paper that is publishable in a peer-reviewed journal or presented at a technical conference. The intent of the research is to advance the body of knowledge in one of the technology areas in the ECE program. Students accepted into this course would have off-hours access to ECE facilities at the Applied Physics Laboratory and the Dorsey Center. A limited amount of support for research materials would also be available.

Prerequisites: Completion of all other courses applicable to the ECE master’s degree and approval of the ECE program chair and vice chair.
Environmental Engineering, Science, and Management

In a world undergoing rapid ecological transformation, the role of environmental engineers, scientists, and planners has become increasingly prominent. In the Johns Hopkins tradition of excellence, the graduate part-time program in environmental engineering, science, and management is one of the most comprehensive and rigorous professional environmental engineering, science, technology, planning, and management programs in the nation. The program accommodates working professionals who wish to complete graduate degree requirements without interrupting their careers and provides them with skills necessary to address a broad array of modern environmental issues and capitalize on environmental protection and remediation opportunities presented by technology. Common to all program activities is recognition of the importance of obtaining a strong quantitative background in the environmental engineering, science, and management principles that govern environmental processes.

In the program, students obtain an up-to-date level of understanding in the following interrelated academic fields:

- Study of physical, chemical, and biological processes fundamental to understanding the environment fate and engineered treatment of environmental contaminants
- Understanding the source and nature of waste materials that contribute to air, soil, and water pollution and relevant management and control technologies
- Study of the transport and transformation of contaminants through environmental pathways
- Knowledge of the pollution prevention and technologies and designs associated with the treatment and disposal of waste materials
- Rigorous study of the connection between the engineering and scientific aspects of environmental problems and decision-making processes

Improved understanding in all of these areas is achieved through a quantitative program built around the common theme of engineering and science in support of environmental decision making and management.

Program Committee

Hedy V. Alavi, Program Chair
Environmental Engineering, Science, and Management,
Johns Hopkins Engineering for Professionals
Whiting School of Engineering

The entire faculty of the Whiting School’s Department of Geography and Environmental Engineering functions as the program committee for EP’s Master of Science in Environmental Engineering, Science, and Management. This committee ensures that instruction in the part-time program is of the highest quality and is continually enhanced in a manner consistent with parallel developments in the full-time program.

Program Advisory Board

An external advisory board provides oversight, vision, input, and perspective from the professional, technical, and business communities. The board consists of distinguished representatives from professional environmental organizations, state and federal agencies, prominent environmental consulting firms/industry, part-time faculty, and part-time students. The advisory board is co-chaired by William C. Anderson, executive director, Council of Engineering, and George Frigon, president, Newfields.

Faculty

The program features about 50 highly qualified faculty members. Each is a distinguished and experienced professional with the highest academic degree in their field of expertise, and each has demonstrated a strong commitment to excellence in teaching. Many of the outstanding full-time faculty from the nationally renowned Department of Geography and Environmental Engineering at Johns Hopkins participate as program instructors. In addition, the program includes several directors, senior scientists, engineers, researchers, and attorneys affiliated with the U.S. Environmental Protection Agency, Maryland Department of the Environment, U.S. Department of Energy, National Research Council, U.S. Department of Defense, U.S. Department of Agriculture, National Institute of Standards and Technology, U.S. Army Corps of Engineers, and many leading environmental consulting companies such as Bechtel Corporation, CH2M Hill, Lockheed Martin Corporation, Northrop-Grumman. Please see the Appendix for the list of active faculty members and their affiliations.

Online Options

The Master of Science in Environmental Planning and Management is available fully online. All environmental engineering students may register for online courses to meet degree requirements.

Degrees and Certificates

The program offers professional non-thesis degrees in the following three areas of study and their corresponding advanced certificates for post-master’s study as well as graduate certificates.

- Master of Environmental Engineering
- Master of Science in Environmental Engineering and Science
- Master of Science in Environmental Planning and Management
- Advanced Certificate for Post-Master’s Study in Climate Change, Energy, and Environmental Sustainability
• Advanced Certificate for Post-Master’s Study in Environmental Engineering
• Advanced Certificate for Post-Master’s Study in Environmental Engineering and Science
• Advanced Certificate for Post-Master’s Study in Environmental Planning and Management
• Graduate Certificate

Master of Environmental Engineering
This area of study focuses on the design of collection and treatment processes for air, water, wastewater, and solid and hazardous waste, including study of the conceptual principles underlying biological, physical, and chemical treatment.

Admission Requirements
Prospective students must hold an Accreditation Board for Engineering and Technology (ABET)-accredited undergraduate degree or demonstrated equivalent in an engineering discipline from a four-year college or university to be considered for the Master of Environmental Engineering degree. Moreover, applicants must meet the following criteria:
1. Grade point average of at least 3.0 on a 4.0 scale in the second half of the undergraduate record or hold graduate degrees in an engineering discipline
2. Successful completion of calculus sequence through differential equations
3. Successful completion of a course in fluid mechanics or hydraulics
4. Successful completion of a course in statistics (recommended)

Applicants with an undergraduate degree in natural sciences may be admitted as provisional students to complete additional undergraduate course work in engineering fundamentals and design prior to full admission to the program.

Course Requirements
Attainment of the Master of Environmental Engineering degree requires completion of 10 one-term courses, including at least four courses at the 575.7xx level or above, within five years.

At least five of the required 10 courses must be taken in the Master of Environmental Engineering area of study.

Up to five elective courses, subject to prerequisite restrictions, may be taken from any of the three areas of study (Master of Environmental Engineering, Master of Science in Environmental Engineering and Science, or Master of Science in Environmental Planning and Management). Any deviation from these requirements must be approved by the student’s advisor.

Master of Science in Environmental Engineering and Science
This area of study stresses the fundamental concepts of physics, chemistry, biology, and geology as applied in the context of environmental issues, with less emphasis on design and management.

Admission Requirements
Prospective students must hold an undergraduate degree in either engineering or natural science from a four-year college or university to be considered for the Master of Science in Environmental Engineering and Science degree. Moreover, applicants must meet the following criteria:
1. Grade point average of at least 3.0 on a 4.0 scale in the second half of the undergraduate record or hold graduate degrees in an engineering or a natural science discipline
2. Successful completion of one year of college-level calculus and a course in differential equations
3. Successful completion of college-level courses in physics, chemistry, biology, geology, and statistics (recommended)

Course Requirements
Attainment of the Master of Science in Environmental Engineering and Science degree requires completion of 10 one-term courses, including at least four courses at the 575.7xx level or above, within five years.

At least five of the required 10 courses must be taken in the Master of Science in Environmental Engineering and Science area of study.

Up to five elective courses, subject to prerequisite restrictions, may be taken from any of the three areas of study (Master of Environmental Engineering, Master of Science in Environmental Engineering and Science, or Master of Science in Environmental Planning and Management). Any deviation from these requirements must be approved by the student’s advisor.

Master of Science in Environmental Planning and Management
This specialty emphasizes the relationships between environmental engineering/science and public policy with a focus on decision-making tools and policy analysis, as well as emphasis on the role of economic factors in environmental management and water resources planning. This is a professional non-thesis curriculum that encompasses the analytical and conceptual tools to identify, formulate, and evaluate complex environmental and water resources projects and systems, considering the interdisciplinary aspects of the technical, environmental, economic, social, and financial constraints.

Admission Requirements
Prospective students must hold an undergraduate degree in engineering, natural science, economics, planning, management, or other related disciplines from a four-year college or university to be considered for the Master of Science in Environmental Planning and Management degree. Moreover, applicants must meet the following criteria:
1. Grade point average of at least 3.0 on a 4.0 scale in the second half of the undergraduate record or hold graduate degrees in engineering, natural science, economics, planning, management, or other related disciplines
2. Successful completion of one year of college-level calculus
3. Successful completion of college-level courses in physics, chemistry, biology, geology, and statistics (recommended)
Course Requirements
Attainment of the Master of Science in Environmental Planning and Management degree requires completion of 10 one-term courses, including at least four courses at the 575.7xx level or above, within five years.

At least five of the required 10 courses must be taken in the Master of Science in Environmental Planning and Management area of study.

Up to five elective courses, subject to prerequisite restrictions, may be taken from any of the three areas of study (Master of Environmental Engineering, Master of Science in Environmental Engineering and Science, or Master of Science in Environmental Planning and Management). Any deviation from these requirements must be approved by the student's advisor.

Advanced Certificate for Post-Master’s Study in Environmental Engineering, Science, or Management

Admission Requirements
Prospective students should possess a master's degree in environmental engineering, science, management, or similar discipline. The program is intended to add depth and/or breadth in the field of the student's master's degree or one that is closely related.

Course Requirements
This certificate is awarded to students who complete six graduate-level courses beyond the master's degree. After being admitted to the program, students are assigned an advisor with whom they jointly design a program tailored to their educational goals. The program consists of five core courses and several advanced electives. At least three of the required six courses must be at the 700-level or above, with students completing all courses with a grade of B− or better within three years of enrollment.

Core Courses
575.711 Climate Change and Global Environmental Sustainability
575.720 Air Resources Modeling and Management
575.723 Sustainable Development and Next Generation Buildings
575.733 Energy Planning and the Environment
575.734 Smart Growth Strategies for Sustainable Urban Development and Revitalization

Elective Courses
180.611 The Global Environment and Public Health
420.644 Sustainable Cities
575.408 Optimization Methods for Public Decision Making
575.411 Economic Foundations for Public Decision Making
575.423 Industrial Processes and Pollution Prevention
575.435 Environmental Law for Engineers and Scientists
575.437 Environmental Impact Assessment
575.710 Financing Environmental Projects
575.721 Air Quality Control Technologies
575.759 Environmental Policy Analysis
Graduate Programs

575.801 Independent Project in Environmental Engineering, Science, and Management
615.448 Alternate Energy Technology
615.775 Physics of Climate

Graduate Certificate

The graduate certificate is directed toward students who may not need a master’s degree, may not have the opportunity to pursue the entire master’s degree, or may wish to focus their studies on a set of courses in a specific subject area.

The certificate consists of six courses. All grades for the six courses must be B− or above. If, in the future, the student decides to pursue the full master’s degree, all courses will apply provided they meet the program requirements and fall within the five-year limit, and the student declares her/his intention prior to award of the certificate.

Students must meet the master’s degree admission requirements of the desired area of study. After the review of the student’s academic credentials by the admission committee and admittance to the graduate certificate program, each student is assigned an advisor with whom he or she jointly designs a program tailored to individual educational goals.

Students must complete the graduate certificate within three years of the first enrollment in the program.

Program Plan

Each student admitted to a degree or certificate program is assigned an academic advisor with whom he or she jointly designs a program plan tailored to individual educational objectives and the degree provisions. After admission to the degree program, students must submit an initial program plan indicating the courses they wish to take to fulfill the degree requirements. This plan, and subsequent changes to it, must be approved by the student’s advisor.

Special Student

Students who satisfy the admission requirements but do not wish to receive a degree or certificate may also apply to be designated as Special Students to take graduate-level courses for which they have satisfied the relevant prerequisites. If the student is subsequently accepted to a degree or certificate program, the admissions committee will determine whether these courses may be counted in fulfillment of degree requirements.

Course Offerings

Courses are offered at Homewood campus in Baltimore, the Montgomery County Campus in Rockville, the Dorsey Center in Elkridge, the Applied Physics Laboratory in Laurel, the Washington D.C. Center, and online.

Note: Some of the courses have prerequisites. Students should refer to the course schedule published each term for exact dates, times, locations, fees, and instructors.

Classified by the area of study, the courses offered include:

Master of Environmental Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>575.404</td>
<td>Principles of Environmental Engineering</td>
</tr>
<tr>
<td>575.405</td>
<td>Principles of Water and Wastewater Treatment*</td>
</tr>
<tr>
<td>575.406</td>
<td>Water Supply and Wastewater Collection</td>
</tr>
<tr>
<td>575.407</td>
<td>Radioactive Waste Management</td>
</tr>
<tr>
<td>575.420</td>
<td>Solid Waste Engineering and Management</td>
</tr>
<tr>
<td>575.423</td>
<td>Industrial Processes and Pollution Prevention</td>
</tr>
<tr>
<td>575.703</td>
<td>Environmental Biotechnology</td>
</tr>
<tr>
<td>575.706</td>
<td>Biological Processes for Water and Wastewater Treatment</td>
</tr>
<tr>
<td>575.715</td>
<td>Subsurface Fate and Contaminant Transport</td>
</tr>
<tr>
<td>575.721</td>
<td>Air Quality Control Technologies</td>
</tr>
<tr>
<td>575.742</td>
<td>Hazardous Waste Engineering and Management</td>
</tr>
<tr>
<td>575.745</td>
<td>Physical and Chemical Processes for Water and Wastewater Treatment</td>
</tr>
<tr>
<td>575.746</td>
<td>Water and Wastewater Treatment Plant Design</td>
</tr>
<tr>
<td>575.801</td>
<td>Independent Project in Environmental Engineering, Science and Management</td>
</tr>
</tbody>
</table>

*Courses available online.

Master of Science in Environmental Engineering and Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>575.401</td>
<td>Fluid Mechanics*</td>
</tr>
<tr>
<td>575.415</td>
<td>Ecology*</td>
</tr>
<tr>
<td>575.426</td>
<td>Hydrogeology*</td>
</tr>
<tr>
<td>575.429</td>
<td>Modeling Contaminant Migration through Multimedia Systems</td>
</tr>
<tr>
<td>575.443</td>
<td>Aquatic Chemistry*</td>
</tr>
<tr>
<td>575.445</td>
<td>Environmental Microbiology*</td>
</tr>
<tr>
<td>575.704</td>
<td>Applied Statistical Analyses and Design of Experiments for Environmental Applications*</td>
</tr>
<tr>
<td>575.708</td>
<td>Open Channel Hydraulics*</td>
</tr>
<tr>
<td>575.713</td>
<td>Field Methods in Habitat Analysis and Wetland Delineation</td>
</tr>
<tr>
<td>575.716</td>
<td>Principles of Estuarine Environment: The Chesapeake Bay Science and Management</td>
</tr>
<tr>
<td>575.717</td>
<td>Hydrology*</td>
</tr>
<tr>
<td>575.727</td>
<td>Environmental Monitoring and Sampling</td>
</tr>
<tr>
<td>575.728</td>
<td>Sediment Transport and River Mechanics</td>
</tr>
<tr>
<td>575.730</td>
<td>Geomorphic and Ecologic Foundations of Stream Restoration</td>
</tr>
<tr>
<td>575.744</td>
<td>Environmental Organic Chemistry</td>
</tr>
<tr>
<td>575.801</td>
<td>Independent Project in Environmental Engineering, Science and Management</td>
</tr>
</tbody>
</table>

*Courses available online.
Course Descriptions

575.401 Fluid Mechanics
This course introduces the principles of continuity, momentum, and energy applied to fluid motion. Topics include hydrostatics; ideal-fluid flow; laminar flow; turbulent flow; form and surface resistance with applications to fluid measurement; and flow in conduits, channels, pumps, and turbines.

575.404 Principles of Environmental Engineering
This course provides knowledge of environmental elements with insight into quantitative analysis and design where applicable. Topics include mass and energy transfer and balances; environmental chemistry; mathematics of growth and decay; risk assessment and management; surface water pollutants, biological and chemical oxygen demands; eutrophication; water supply systems and drinking water standards; wastewater treatment systems and effluent standards; groundwater flow, contaminant transport, and remediation technologies; hazardous waste and pollution prevention; remedial and corrective actions at contaminated sites; air pollution sources, control technologies, and atmospheric stability; ambient air quality standards and indoor air quality; global temperature; greenhouse effect and warming potential; global energy balance, carbon emission, and stratospheric ozone depletion; solid waste management, landfill disposal, combustion, composting, and recycling; medical waste; and environmental law, ethics, and justice. Field trips are integrated into the classes.

575.406 Water Supply and Wastewater Collection
This course covers the design of reservoirs, conduits, water distribution systems, well fields, sewers, and drains. Included is a study of population growth and its effects on water supply requirements and sewage flows as well as techniques for analyzing rainfall, runoff, fluid flow, reservoir siting, and groundwater flows.

575.407 Radioactive Waste Management
This course covers fundamental aspects of radioactive substances in the environment; remediation processes for these substances; and their eventual storage, processing, and disposal. It provides a basic understanding of radioactivity and its effect on humans and their environment, and the techniques for their remediation and disposal. Topics include radioactivity, the nucleides, interaction of radiation with matter, shielding, dosimetry, biological effects, protection standards, sources of environmental radiation, risk evaluation, fate and transport.
analysis, cleanup standards, legal requirements, cleanup technologies, waste disposal, and case studies.

575.408 Optimization Methods for Public Decision Making

This course is an introduction to applied operations research, that is, the development of optimization and simulation models intended to help people make decisions involving complex problems. The concepts and tools that we work with include linear and nonlinear optimization, dynamic programming, multiobjective optimization, integer programming, stochastic programming, and Markov decision processes. The material is presented in an environmental engineering relevant context, with practical engineering problems frequently serving as both the motivation and the means through which the concepts of the course are taught. Such problems span a diverse array of timely issues involving water and air pollution control, logistical planning, and resource allocation.

575.411 Economic Foundations for Public Decision Making

The course examines intermediate-level price theory and surveys applications to public sector decision making. Topics include demand, supply, behavior of the market, and introductory welfare economics. Applications include forecasting, benefit-cost analysis, input-output analysis, and economic modeling.

575.415 Ecology

Course topics include an introduction to the organization of individual organisms into populations, communities, and ecosystems; interactions between individual organisms, groups of organisms and the environment (including competition, natural selection, adaptation, diversity, and the role of climate change on migration and extinction); the effect of acidification of the environment (including deforestation); and other human impacts on species diversity, community structure, and ecosystem stability.

575.416 Engineering Risk and Decision Analysis

This course introduces students to the methods of risk analysis and decision analysis for engineers. Both quantitative and qualitative risk analysis methods will be covered. Topics will include qualitative risk analysis methods (risk lists; matrices; failure modes and effects analysis; failure modes, effects, and criticality analysis, etc.), quantitative engineering risk analysis methods (fault trees, event trees, etc.), environmental health risk analysis methods, decision bases, the axioms underlying decision analysis, and quantitative decision analysis methods (decision trees, utility functions, risk attitude, value of information calculations, etc.). The course also covers risk perception, risk communication, and risk governance. Expert assessment and the role of cognitive biases in the expert assessment process are included as well. The focus of this course is on the fundamentals of risk and decision analysis rather than their application in a particular field. Examples will be provided for a variety of different fields of engineering, including space system design, environmental management, nuclear stockpile reliability, groundwater cleanup, and electric power system reliability assessment.

575.419 Principles of Risk Assessment and Management

Risk assessment and risk management have become central tools in continued efforts to improve public safety and the environment within the limited resources available. This course introduces the basic concepts of environmental risk assessment, relative risk analysis, and risk perception, including identifying and quantifying human health impacts and evaluating ecological risk. The course describes legislative and regulatory initiatives that are attempting to base decisions on risk assessment, along with the controversy that surrounds such approaches. It also addresses specific federal requirements for risk analysis by industry. The course discusses the realities of using risk assessments in risk management decisions, including the need to balance costs and benefits of risk reduction, issues of environmental equity, accounting for the uncertainties in risk estimates, effective risk communication, and acceptable risk.

575.420 Solid Waste Engineering and Management

This course covers advanced engineering and scientific concepts and principles applied to the management of municipal solid waste (MSW) to protect human health and the environment and the conservation of limited resources through resource recovery and recycling of waste material. Topics include regulatory aspects and hierarchy of integrated solid waste management; characterization and properties of MSW; municipal wastewater sludge utilization; hazardous waste found in MSW; collection, transfer, and transport of solid waste; separation, processing, combustion, composting, and recycling of waste material; and the landfill method of solid waste disposal, which encompasses guidelines for design, construction, operation, siting, monitoring, remedial actions, and closure of landfills. Permitting and public participation processes, current issues, and innovative approaches are also addressed.

575.423 Industrial Processes and Pollution Prevention

This course presents the pollution prevention and waste minimization concepts, terminologies, life cycle impacts, and management strategies. The course introduces available remediation techniques for industrial pollution control and prevention and examines specific applications to industries including biological, chemical, physical, and thermal techniques. Topics include current state of knowledge of pollution preven-
tion approaches to encourage pollution prevention strategies, highlights of selected clean technologies and clean products, technical and economical issues, incentives and barriers to pollution prevention, and the role of different sectors in promoting pollution prevention. Pollution prevention and waste minimization techniques such as waste reduction, chemical substitution, production process modification, and reuse and recycling will be addressed to selected industries such as textiles, electroplating, pulp and paper, and petroleum refining.

Engel-Cox

575.426 Hydrogeology

This course is an introduction to groundwater and geology and to the interactions between the two. It provides a basic understanding of geologic concepts and processes, focusing on understanding the formation and characteristics of water-bearing formations. The course also addresses the theory of groundwater flow, the hydrology of aquifers, well hydraulics, groundwater-resource evaluation, and groundwater chemistry. The relationship between the geologic concepts/processes and the groundwater resource is discussed. Examples include a discussion of the influence of the geologic environment on the availability and movement of groundwater and on the fate and transport of groundwater contaminants. Geotechnical engineering problems associated with groundwater issues are also covered.

Taylor

575.428 Business Law for Engineers

This course introduces engineers to the basic legal principles they will encounter throughout their careers. Course discussions cover contracts (formation, performance, breach, and termination), corporations and partnerships, insurance, professional liability, risk management, environmental law, torts, property law, and evidence and dispute resolution. The course emphasizes those principles necessary to provide engineers with the ability to recognize issues that are likely to arise in the engineering profession and introduces them to the complexities and vagaries of the legal profession.

Leiman

575.429 Modeling Contaminant Migration through Multimedia Systems

This course addresses contamination that can affect many media as they migrate through the environment. Typically, contaminant sources occur in soil, from which the chemicals then migrate to air, surface water, and groundwater. Predicting the movement of contaminants through these media requires addressing the fate and transport processes that predominate in each medium and integrating the interactions between the media. The course presents the basic principles and numerical methods for simulation contaminant migration from soil into and through surface-water bodies, air, and groundwater. The basic processes of fate and transport in the various media will be addressed: entrainment, adsorption, volatilization, chemical reactions such as degradation and photolysis, convection, and Gaussian dispersion and deposition. Selected public-domain numerical models will be used to simulate the fate and transport processes. Central to the course will be a project that integrates multimedia environmental modeling through a case study.

Toussaint

575.435 Environmental Law for Engineers and Scientists

This course explores fundamental legal concepts relevant to environmental issues, including the relationship between statutes, regulations, and court decisions. Also included are various forms of enforcement used in environmental rules: command and control, liability, and information disclosure. Specific issues include criminal enforcement, a survey of environmental statutes, regulations and case law, the purpose and misconceptions surrounding environmental audits and assessments, the concept of attorney-client privilege, unauthorized practice of law, and ethical conflicts between the attorney and engineer/scientist roles.

Henderson

575.437 Environmental Impact Assessment

This course examines principles, procedures, methods, and applications of environmental impact assessment. The goal of the course is to promote an understanding of how environmental impact assessment is conducted and used as a valuable tool in the engineering project management decision making process. Topics include an overview of environmental impact assessment; selection of scientific, engineering, and socioeconomic factors in environmental impact assessment; identification of quantitative and qualitative environmental evaluation criteria; application of traditional and other techniques for assessing impacts of predicted changes in environmental quality; approaches for identifying, measuring, predicting, and mitigating environmental impacts; modeling techniques employed in environmental impact assessment; environmental standards and the environmental impact assessment process; and methodologies for incorporating environmental impact assessment into management decision making. Students learn to prepare an environmental impact assessment, review and critically analyze an environmental impact statement, use mathematical models for environmental impact prediction, and apply environmental impact assessment as a tool in management decision making. Case studies of environmental impact assessment for several types of engineering projects are employed.

Toussaint

575.440 Geographic Information Systems (GIS) and Remote Sensing for Environmental Applications

Through lectures and laboratory exercises, this course illustrates the fundamental concepts of GIS and remote sensing technologies in the context of environmental engineering. Topics include the physical basis for remote sensing, remote sensing systems, digital image processing, data structures,
database design, and spatial data analysis. The course is not intended to provide students with extensive training in particular image processing or GIS packages. However, hands-on computer laboratory sessions re-enforce critical concepts. Working knowledge of personal computers and completion of a term project are required.

Rope

575.443 Aquatic Chemistry
Thermodynamics and equilibria are applied to processes in natural waters, water supply systems, wastewater treatment systems, and other water-based systems. Topics include the chemistry of electrolyte solutions, acids and bases, dissolved carbonate and other pH-buffering solutes, the precipitation and dissolution of inorganic solids, complex formation and chelation, and oxidation-reduction reactions. Quantitative problem solving and the visualization of chemical speciation are emphasized.

Gilbert

575.445 Environmental Microbiology
This course covers fundamental aspects of microbial physiology and ecology. Specific areas of focus include energetics and yield, enzyme and growth kinetics, cell structure and physiology, metabolic and genetic regulation, microbial/environmental interactions, and biogeochemical cycles. The goal of this course is to provide a basic understanding and appreciation of microbial processes that may be applicable to environmental biotechnology.

Wilson-Durant

575.703 Environmental Biotechnology
This course examines current applications of biotechnology to environmental quality evaluation, monitoring, and remediation of contaminated environments. The scale of technology ranges from the molecular to macrobiotic. Relevant topics of microbiology and plant biology are presented. These provide a foundation for subsequent discussions of microbial removal and degradation of organics, phytoremediation of soil and water contaminated with toxic metals and radionuclides, wetlands as treatment processes, biofilms/biofilters for vapor-phase wastes, and composting. Emphasis is placed on modeling and design. Advantages and disadvantages of each application are compared. Case studies are presented in the areas of biosensors in environmental analysis, molecular biology applications in environmental engineering, and genetic engineering of organisms for bioremediation.

Prerequisite: Prior course work in environmental microbiology or biochemical engineering is recommended but not required.

Wilson-Durant, Lasat

575.704 Applied Statistical Analyses and Design of Experiments for Environmental Applications
This course introduces statistical analyses and techniques of experimental design appropriate for use in environmental applications. The methods taught in this course allow the experimenter to discriminate between real effects and experimental error in systems that are inherently noisy. Statistically designed experimental programs typically test many variables simultaneously and are very efficient tools for developing empirical mathematical models that accurately describe physical and chemical processes. They are readily applied to production plant, pilot plant, and laboratory systems. Topics covered include fundamental statistics; the statistical basis for recognizing real effects in noisy data; statistical tests and reference distributions; analysis of variance; construction, application, and analysis of factorial and fractional-factorial designs; screening designs; response surface and optimization methods; and applications to pilot plant and waste treatment operations. Particular emphasis is placed on analysis of variance, prediction intervals, and control charting for determining statistical significance as currently required by federal regulations for environmental monitoring.

Bozd

575.706 Biological Processes for Water and Wastewater Treatment
This course develops the fundamentals and applications of aerobic and anaerobic biological unit processes for the treatment of municipal and industrial wastewater. The principles of activated sludge, aeration and clarifier design, fixed film reactors, anaerobic treatment, solids handling and treatment, land treatment, and nutrient removal are presented. This course uses concepts from microbiology and the basic principles of stoichiometry, energetics, and microbial kinetics are used to support the design of biological unit processes.

Prerequisites: 575.405 Principles of Water and Wastewater Treatment.

Weiss

575.707 Environmental Compliance Management
The course covers compliance with environmental laws and regulations by industry, small business, government facilities, and others. It includes legal responsibilities, environmental management systems and practices such as audits and information systems, and development of corporate policies and procedures that rise to the daunting challenge of harmonizing the institution’s primary goals with its environmental obligations. Several dimensions of environmental management are discussed: federal, state, and local regulation; scientific/technological factors; public relations and the press; and institutional objectives including economic competitiveness.

Riegel

575.708 Open Channel Hydraulics
The course covers application of the principles of fluid mechanics to flow in open channels. Topics include uniform flow, flow resistance, gradually varied flow, flow transitions, and unsteady flow. The course also addresses flow in irregular
and compound channels, backwater and 2-D flow modeling, and applications to channel design and stability.

Prerequisites: Fluid Mechanics or an equivalent course in fluid flow or hydraulics.

575.710 Financing Environmental Projects

This course treats the financing of projects from two complementary perspectives: that of a government agency funding source and that of an environmental utility (water, wastewater, solid waste) that needs funds for its project. It discusses grants, concessionary loans, market loans, and loan guaranties, along with their relative desirability and efficiency. Since grant funding is never available for all projects, the course deals extensively with borrowing/lending. It discusses strategies for maximizing utility income, including appropriate tariff structures and the reform of government subsidy policy from supply-based general subsidies to demand-based targeted subsidies. Operational strategies to maximize income are also discussed, such as techniques to improve billing and collections, reduce losses, and reduce energy costs. Traditional cash flow analyses are used to determine debt service capabilities. Various project cost reduction strategies, such as staging and scaling, are introduced. Grants in the form of upfront project cost buy-downs vs. annual debt service subsidies are compared. Finally, several examples of project financings combining many of the elements introduced during the course are presented and analyzed.

Hudson

575.711 Climate Change and Global Environmental Sustainability

This is a multidisciplinary course that focuses on the critical assessment of science, impacts, mitigation, adaptation, and policy relevant to climate change and global environmental sustainability. The first half of the course actively investigates concepts and aspects of environmental sustainability, including the review of international assessments and reports and the analyses of relevant implications for human health, natural resources, energy supply and demand, and waste/pollution. The second half of the course addresses climate change science; existing evidence and observations of climate change; models and predictions of potential physical, ecological, and anthropological impacts; technological, economic, political, and consumer driven mitigation and adaptation strategies; and past and present local, state, federal, and international policy and legislation. This course stresses active learning and critical thinking. It requires both the objective and subjective analyses of an array of environmental sustainability and climate change topics and materials. Students will be required to report on a current work of relevant non-fiction in the field, complete an original case study, and critically review climate change documentaries. Students will also be required to complete quantitative technical assignments; research popular press, governmental agency, and peer-reviewed scientific literature; and participate in class discussions, presentations, and exercises.

Curley

575.713 Field Methods in Habitat Analysis and Wetland Delineation

The course provides students with practical field experience in the collection and analysis of field data needed for wetland delineation, habitat restoration, and description of vegetation communities. Among the course topics are sampling techniques for describing plant species distributions and community structure and diversity, including the quadrant and transect-based, point-intercept, and plotless methods; identification of common and dominant indicator plant species of wetlands and uplands; identification of hydric soils; use of soil, topographic, and geologic maps and aerial photographs in deriving a site description and site history; and graphic and statistical methods including GIS applications for analyzing and presenting the field data. The classes consist of field studies to regional and local sites.

Prerequisite: 575.415 Ecology.

Hilgartner

575.714 Water Resources Management

This course examines watershed approaches to maintenance of the hydrological, chemical, and biological integrity of the nation’s waters. Water supply topics include rainfall runoff relationships, probabilistic flow analysis, multiple-objective reservoir siting and operation, and safe yield analysis. Water quality topics include regulatory requirements; non-point source runoff; point source discharge; water quality analysis of streams, lakes, and estuaries (including waste heat, conventional pollutants, and toxic chemicals); and in-stream biological resource requirements and assessment. Both the water supply and water quality discussions provide an overview of current computer simulation models. The course concludes with new integrated approaches for watershed management, including Waste Load Allocation and Total Maximum Daily Loss (TMDL) analysis for pollutants entering water bodies.

Georgen, Joseph

575.715 Subsurface Fate and Contaminant Transport

The course covers the nature and sources of chemicals in the subsurface, the role of groundwater and soil water in mobilizing and spreading contamination, the processes that control distribution and fate of subsurface contamination, the accepted methods of investigating and analyzing contamination, and contaminant transport. The course also considers surface water contamination caused by contamination in the groundwater. Computer laboratories of groundwater model simulations and solute transport solutions are used.

Barranco, Durant

575.716 Principles of Estuarine Environment: The Chesapeake Bay Science and Management

The course examines the basic physical, chemical, and biological components of the Chesapeake Bay ecosystem and how they interrelate in both healthy and degraded states.
of an estuary. The course centers around the tidal waters of the Chesapeake Bay and its tributaries while also including relationships with the surrounding watershed, atmosphere, and ocean and relevance to other coastal systems. Particular emphasis is given to anthropogenic stresses such as nutrient and contaminant pollution, habitat modification, and harvest of fish and shellfish. The most current Chesapeake Bay management issues and policies being pursued at the federal, state, and local levels of government are discussed in depth, including their scientific foundation.

575.717 Hydrology

This course reviews components of the hydrologic cycle, including precipitation, evapotranspiration, infiltration, subsurface flow, and runoff. Analysis of hydrologic data, including frequency analysis and the use of stochastic models for describing hydrologic processes, is also covered.

Prerequisite: Fluid Mechanics or an equivalent course in fluid flow or hydraulics.

Robert W. Brush

575.720 Air Resources Modeling and Management

Topics covered in this course include an overview of atmospheric motion to give students a sense of how air pollutant transport and transformation is modeled; regulatory considerations in air pollution control related to model selection and use; system analytic approaches for developing air pollution control strategies; a brief overview of air pollution control technology; the state of air pollution in Maryland and the United States; and a detailed look at air pollution control and related information—what exists, how can data be accessed and processed, and which organizations collect and manage data. Specific air pollution problems addressed in the course include those involving tropospheric ozone, stratospheric ozone, acid rain, carbon monoxide, nitrogen oxides, and particulate matter.

Robert S. Raffensperger

575.721 Air Quality Control Technologies

This is a multidisciplinary course that involves the applications of chemistry, thermodynamics, and fluid mechanics in the selection and design of air pollution control equipment. Topics include the estimation of potential pollutants, chemical characterization of gas streams to be controlled, theory and practice of air pollution control, and design and costing of control technologies. The course emphasizes the design of systems to reduce particulate matter emissions, volatile organic compound (VOC) emissions, nitrogen oxide emissions, and sulfur dioxide emissions.

Prerequisites: Fluid Mechanics or an equivalent course in fluid flow; an undergraduate course in thermodynamics.

Robert W. Roper

575.723 Sustainable Development and Next Generation Buildings

The course will introduce the concepts, applications, and tools for analysis and decision making in support of sustainable environmental development and next generation communities and building design. Students will be introduced to a variety of challenges related to environmental protection, stewardship, and management of air, soil, and water. The underlying principles of ecological protection, stewardship, reduced environmental footprint, ecosystem capital, sustainable economic development, and globalization impacts will be reviewed. The integration of actions that are ecologically viable, economically feasible, and socially desirable to achieve sustainable solutions will be evaluated. Within this context sustainable building concepts will be explored that are intended to provide throughout their lifetime a beneficial impact on their occupants and their surrounding environment. Such buildings are optimally integrated on all parameters—initial affordability, timeliness of completion, net life-cycle cost, durability, functionality for programs and persons, health, safety, accessibility, aesthetic and urban design, maintainability, energy efficiency, and environmental sustainability. The principles of LEED building design and certification will also be introduced and example projects reviewed. Integrated design and construction practices that significantly reduce or eliminate the negative impact of buildings on the environment and occupants will be assessed in the broad areas of: 1) sustainable site planning, 2) safeguarding water and water efficiency, 3) energy efficiency and renewable energy, 4) conservation of materials and resources, and 5) indoor environmental quality. A critical element for a successful sustainable building policy and program is an integrated building planning and design process. Integrated planning and design refers to an interactive and collaborative process in which all stakeholders are actively involved and communicate with one another throughout the design and construction practice. These processes will also provide a broader understanding of sustainable options for infrastructure changes that may occur in various BRAC planning and implementation situations. A number of case studies will be examined to gain an understanding of application issues.

Roper W. Roper

575.727 Environmental Monitoring and Sampling

The course examines in detail the principles and methods for monitoring and discrete sampling of environmental media, including surface water, groundwater, soil, air, solid wastes, and tissues within the context of regulatory compliance. Basic health and safety issues and Data Quality Objectives will be covered initially. Sampling design covers basic statistical concepts, including data variability and detection of significant differences among sample sets. Regulatory perspectives reviews requirements of the major statutes governing sampling of various media, including the Clean Water Act, Clean Air Act, CERCLA, and RCRA. Sampling methods surveys current methods for discrete sampling and automated data
acquisition for each medium. Chemical and biological analysis reviews laboratory methods for analyzing samples. Data presentation and interpretation covers data management methods to support decision making. The course includes field trips and off-campus lectures and/or demonstrations at laboratories.

Stoddard

575.728 Sediment Transport and River Mechanics
This course examines the processes of sediment entrainment, transport, and deposition and the interaction of flow and transport in shaping river channels. Topics reviewed include boundary layer flow; physical properties of sediment; incipient, bed-load, and suspended-load motion; bed forms; hydraulic roughness; velocity and stress fields in open channels; scour and deposition of bed material; bank erosion; and size, shape, platform, and migration of river channels. In addition, the course develops techniques of laboratory, theoretical, and numerical modeling and applies them to problems of channel design, restoration, and maintenance.

Prerequisites: Fluid Mechanics or an equivalent course in fluid flow or hydraulics.

Wilcock

575.730 Geomorphic and Ecologic Foundations of Stream Restoration
This course presents principles from hydrology, sedimentation engineering, geomorphology, and ecology relevant to the design and evaluation of stream restoration projects. A watershed context is emphasized in developing the background needed to assess different design approaches. After developing a common foundation in stream dynamics, the course considers tradeoffs among restoration objectives, the merits of analog and predictive approaches, the role of uncertainty in restoration design, and metrics for assessing ecological recovery. The course includes field trips, design exercises, and project assessment.

Wilcock

575.731 Water Resource Planning
The course will discuss the application and interrelationships among microeconomics, ecology, hydrology, and related fields to the planning and management of water systems. Topics will include flood control, navigation, hydroelectric power, water supply, environmental restoration, multiobjective planning, and urban water resource management. The course will demonstrate the process for planning a water resource project, including identifying the problems and opportunities, inventorying and forecasting conditions, formulating alternative plans, evaluating alternative plans, comparing alternative plans, and selecting a plan. Particular attention will be paid to the appropriate interdisciplinary approach to plan formulation.

Kranzer

575.733 Energy Planning and the Environment
This course examines the interrelationships between the environment and the ways in which energy is produced, distributed, and used. Worldwide energy use patterns and projections are reviewed. Particular attention is paid to the electrical and transportation sectors of energy use. Underlying scientific principles are studied to provide a basis for understanding the inevitable environmental consequences of energy use. Topics studied include fossil, nuclear, and existing and potential renewable sources, including hydroelectric, geothermal, tidal, wind, and solar. Transportation options including internal combustion, hybrid, and electric options are quantitatively compared. Use of alternate fuels such as biodiesel and ethanol are evaluated. Emphasis is placed on the environmental impacts of energy sources, including local effects resulting from emissions of nitrogen oxides, sulfur, hydrocarbons, and particulates as well as global effects such as mercury release from coal combustion. Carbon emissions are a continuing theme as each energy technology is studied and its contribution to climate change is assessed. Carbon suppression schemes are examined. Particular attention is paid to consequences and effectiveness of government intervention and regulation. The purpose is to help students understand how energy is converted into useful forms, how this conversion impacts our environment, and how public policy can shape these impacts.

Prerequisite: 575.411 Economic Foundations for Public Decision Making, or an equivalent course in microeconomic theory, is recommended.

Lightner

575.734 Smart Growth Strategies for Sustainable Urban Development and Revitalization
This course addresses the concepts, practices, and tools for smart growth sustainable urban planning and provides an understanding for how to apply these to urban communities. The sustainable urban development is a pattern of resource use that aims to meet human needs while preserving the environment so that these needs can be met not only in the present but also for generations to come. In other words, it is the development and restoration of urban areas that will meet the needs of the present without compromising the ability of future generations to meet their own needs. The course addresses a number of urban design concepts for smart growth and sustainable development, including balanced land use planning principles; importance of an overall transportation strategy; providing urban tree coverage; leveraging public transportation accessibility; providing a spectrum of housing availability; integration of office, retail, and housing units; reduction of urban area environmental footprint; use of recycled, reused, reusable, green, and sustainable products; integration of renewable solar energy and wind power into buildings and government systems; transit oriented development; innovative low impact storm water management practices; reduction in urban heat island effects; urban water resource management; and energy efficiency and conservation.

Roper
575.742 Hazardous Waste Engineering and Management

The course addresses traditional and innovative technologies, concepts, and principles applied to the management of hazardous waste and contaminated sites to protect human health and the environment. Topics include regulatory requirements; fate and transport of contaminants; physical, chemical, and biological treatment; land disposal restrictions; guidelines for design, construction, and closure of hazardous waste landfills; environmental monitoring systems; management of medical waste and treatment options; management of underground and aboveground storage tanks; toxicology and risk assessment; pollution prevention and waste minimization; hazardous waste generators and transporters; permitting and enforcement of hazardous waste facilities; closure and financial assurance requirements; and RCRA Subtitle C Corrective Action and CERCLA/Superfund/Bloomfields site remediation processes.

Prerequisite: Introductory organic chemistry.

Jayasundera

575.744 Environmental Organic Chemistry

This course focuses on examination of processes that affect the behavior and fate of anthropogenic organic contaminants in aquatic environments. Students learn to predict chemical properties influencing transfers between hydrophobic organic chemicals, air, water, sediments, and biota, based on a fundamental understanding of intermolecular interactions and thermodynamic principles. Mechanisms of important thermochemical, photochemical, and biochemical transformation reactions are also investigated, leading to development of techniques (such as structure-reactivity relationships) for assessing environmental fate or human exposure potential.

Prerequisite: Introductory organic chemistry.

Jayasundera

575.745 Physical and Chemical Processes for Water and Wastewater Treatment

In this course, mass and momentum transport, aquatic chemistry, and chemical reaction engineering are applied to physical and chemical processes used for water and wastewater treatment. Students also learn the theory and practice of various unit processes including disinfection, oxidation, coagulation, sedimentation, filtration, adsorption, gas transfer, and membrane filtration. The goal is to provide a theoretical understanding of various chemical and physical unit operations, with direct application of these operations to the design and operation of water and wastewater treatment systems. Students will use the concepts learned in this class to better understand the design and operation of engineered and natural aquatic systems.

Prerequisite: 575.405 Principles of Water and Wastewater Treatment.

Toussaint

575.746 Water and Wastewater Treatment Plant Design

This course familiarizes students with appropriate design criteria and the design process for water and wastewater treatment plants. This includes design of treatment processes, cost estimates, and a working design team under project managers. Additional course requirements include oral presentations and writing engineering reports.

Prerequisite: 575.405 Principles of Water and Wastewater Treatment and either 575.706 Biological Processes for Water and Wastewater Treatment or 575.745 Physical and Chemical Processes for Water and Wastewater Treatment.

Arora

575.747 Environmental Project Management

This course educates students on the key elements of an integrated approach to environmental project management, an endeavor that requires expertise in scientific, engineering, legal, public policy, and project management disciplines. Emphasis is placed on critical factors that are often unique to a major environmental project, such as the uncertainty surrounding scope definition for environmental cleanup projects and the evolving environmental regulatory environment. The students learn to develop environmental project plans, establish project organization and staffing, define management functions, develop time management approaches, resolve project conflicts, determine project effectiveness, implement integrated project management techniques such as the Program Evaluation and Review Technique (PERT) and the Critical Path Method (CPM) as they relate to environmental project management, perform pricing and cost estimating, establish cost control, set priorities, and perform tradeoff analyses. The course uses environmental project case studies to examine the integrated nature of environmental project management. Examples of topics to be covered in this case study format include environmental security projects, environmental technology deployment projects, privatization of governmental environmental projects, and pollution prevention/waste minimization projects.

Prerequisites: 575.743 Environmental Engineering, Science, and Management, 575.405 Principles of Water and Wastewater Treatment, and either 575.706 Biological Processes for Water and Wastewater Treatment or 575.745 Physical and Chemical Processes for Water and Wastewater Treatment.

Toussaint

575.759 Environmental Policy Analysis

The course explores the problem of developing appropriate public policies for the primary purpose of restoring, preserving, and protecting aspects of the physical environment. Emphasis is placed on the need to harmonize environmental science, human health, socio-political, technological, legal, financial, and economic considerations in a context of incomplete information and uncertain futures. One or more specific environmental policies are studied in the course of the semester. Students are expected to plan and execute individual research projects that demonstrate the use of quantitative and/or economic tools in designing and evaluating responses to environmental management problems.

Prerequisites: 575.747 Environmental Project Management and either 575.706 Biological Processes for Water and Wastewater Treatment or 575.745 Physical and Chemical Processes for Water and Wastewater Treatment.

Boland
575.801 Independent Project in Environmental Engineering, Science, and Management

This course provides students with an opportunity to carry out a significant project in the field of environmental engineering, science, technology, planning, or management as a part of their graduate program. The project is individually tailored and supervised under the direction of a faculty member and may involve conducting a semester-long research project, an in-depth literature review, a non-laboratory study, or application of a recent development in the field. The student may be required to participate in conferences relevant to the area of study. To enroll in this course, the student must be a graduate candidate in the Environmental Engineering, Science, and Management program within the latter half of the degree requirements and must obtain the approval and support of a sponsoring faculty member in the Department of Geography and Environmental Engineering. The proposal description and completed required forms must be submitted prior to registration for approval by the student's advisor and the program chair. A maximum of one independent project course may be applied toward the master's degree or post-master's certificate.

Staff
Information Assurance

In today’s world, the need to protect an organization’s information and systems from attack is of critical importance. The goal of information assurance (IA) is to enhance the security of information and information systems by ensuring availability, integrity, authentication, confidentiality, and non-repudiation. This includes providing for the preservation and restoration of systems by incorporating protection, detection, and reaction capabilities. IA also focuses on risk management to address threats to new and existing systems.

The Master of Science in Information Assurance is designed to appeal to a broad range of individuals. The program balances theory with practice, providing students with the knowledge and skills needed to protect and defend information systems from attack.

Courses are offered in two concentration areas: networks and systems. The networks area focuses on protecting information assets from network-based intrusion and from attacks that are primarily focused on remote exploitation of protected systems. IA approaches that are effective in this paradigm are explored in depth and a variety of defensive approaches are investigated. In the systems area, attacks are explored from within the system boundary with an emphasis on platform, operating systems and secure software development. Courses from both concentration areas may be interleaved to satisfy the interests of the student.

Students may take courses at the Applied Physics Laboratory, the Montgomery County Campus, the Dorsey Center, and online. Extensive computing facilities are available and can be reached from any of the sites or from home via high-speed broadband internet connections. The facilities also support a variety of software systems, applications, development tools, and specialized labs.

Program Committee

Ralph D. Semmel, Program Chair
Principal Professional Staff
Applied Physics Laboratory

Thomas A. Longstaff, Program Vice Chair
Senior Professional Staff
Applied Physics Laboratory

Eleanor Boyle Chlan, Associate Program Chair
Senior Lecturer in Computer Science
Whiting School of Engineering

Robert S. Grossman
Principal Professional Staff
Applied Physics Laboratory

Marty Hall
President
Coreservlets.com, Inc.

Horace Malcom
Principal Professional Staff
Applied Physics Laboratory

Hashmat Malik
President
Software Productivity Strategists, Inc.

Richard Nieporent
Senior Principal Engineer
MITRE Corporation

John A. Piorkowski
Principal Professional Staff
Applied Physics Laboratory

John Sadowsky
Senior Associate
Zeta Associates, Inc.

Vincent G. Sigillito
Principal Professional Staff (ret.)
Applied Physics Laboratory

Scott Smith
Professor and Chair, Computer Science Department
Whiting School of Engineering

J. Miller Whisnant
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program outlined in the Admission Requirements section of the catalog. In addition, applicants must have completed each of the following with a grade of A or B:

A. One year of calculus (two semesters or three quarters)
B. One mathematics course beyond calculus (e.g., discrete mathematics, linear algebra, or differential equations) – one term
C. One year of introductory computer science including a course in Java or C++, and data structures
D. A course in computer organization – one term

Applicants who have not taken the prerequisite undergraduate courses may satisfy admission requirements by completing the specified courses with grades of A or B. The program offers the following undergraduate courses, which may be taken as needed to satisfy the computer science prerequisites and the requirement for a mathematics course beyond calculus:

605.201 Introduction to Programming Using Java
605.202 Data Structures
605.203 Discrete Mathematics
605.204 Computer Organization
Advanced Certificate for Post-Master’s Study in Information Assurance

Applicants who have already completed a master’s degree in a technical discipline are eligible to apply for an Advanced Certificate for Post-Master’s Study in Information Assurance. Six one-term courses must be completed with grades of A or B within three years. At least five of the six courses must be information assurance courses and at least two of the information assurance courses must be at the 700-level. Students are allowed to take one elective course, subject to adviser approval.

Course Requirements for Master’s Degree

Ten courses, approved by an adviser, must be completed within five years. At least eight courses must be from the IA curriculum, which includes IA courses as well as selected courses from computer science, security informatics, and applied mathematics and statistics. Three courses must be from the same concentration area and at least two of the information assurance courses must be 700-level. No more than one course with a grade of C, and no course with a grade lower than C, may be counted toward the degree.

Students should have had a course in networking prior to taking concentration courses in the networks concentration and a course in operating systems prior to taking courses in the systems concentration. If necessary, the following courses can be taken and applied toward the master’s degree in information assurance.

- 605.412 Operating Systems
- 605.471 Principles of Data Communications Networks

Additional Information for Course Requirements

Students may take up to two electives from outside Information Assurance. Electives can be selected from Computer Science, Electrical and Computer Engineering, and Applied and Computational Mathematics. Other electives require approval of the information assurance program chair or vice chair. Students who take electives from other programs must meet the specific course and program requirements listed for each course.

Graduate students not pursuing a master’s degree in information assurance should consult with their advisor to determine what courses must be successfully completed before 400- or 700-level information assurance courses may be taken. It should be noted that 700-level courses are open only to students who have been admitted with graduate status.

Please refer to the course schedule each term for dates, times, locations, fees, and instructors.

Foundation Courses

The 400-level foundation courses must be taken before other graduate courses, while the 700-level foundation course may be completed anytime after that during the course of the IA degree:

- 605.421 Foundations of Algorithms
- 695.401 Foundations of Information Assurance
- 695.701 Cryptology

Foundation Course Waivers

One or more foundation courses can be waived if a student has received an A or B in equivalent courses. In this case, the student may replace the waived foundation courses with the same number of other graduate courses, and may take these courses after all remaining foundation course requirements have been satisfied.

Graduate Courses by Concentration Area

The information assurance concentration areas including all applicable courses from information assurance, computer science, and security informatics are as follows:

I. Systems

- 695.401 Foundations of Information Assurance
- 695.411 Embedded Computer Systems—Vulnerabilities, Intrusions, and Protection Mechanisms
- 695.711 Java Security
- 695.712 Authentication Technologies
- 695.714 Reverse Engineering and Vulnerability Analysis
- 695.742 Digital Forensics Technologies and Techniques
- 695.791 Information Assurance Architectures and Techniques
- 605.401 Foundations of Software Engineering
- 605.412 Operating Systems
- 605.421 Foundations of Algorithms
- 605.704 Object-Oriented Analysis and Design
- 605.715 Software Development for Real-Time Systems
- 605.716 Modeling and Simulation of Complex Systems

Systems Courses at Homewood

- 550.471 Cryptography and Coding
- 600.643 Advanced Topics in Computer Security
- 600.648 Secure Software Engineering
- 650.457 Computer Forensics
- 650.459 Software Vulnerability Analysis

II. Networks

- 695.421 Public Key Infrastructure and Managing E-Security
- 695.422 WWW Security
- 695.423 Intrusion Detection
- 695.701 Cryptology
- 695.721 Network Security
- 695.741 Information Assurance Analysis
- 695.791 Information Assurance Architectures and Technologies
- 605.471 Principles of Data Communications Networks
- 605.472 Computer Network Architectures and Protocols
- 605.475 Protocol Design and Simulation
Course Descriptions

695.401 Foundations of Information Assurance
(formerly 605.431 Principles of Information Assurance)

This course surveys the broad fields of enterprise security and privacy, concentrating on the nature of enterprise security requirements by identifying threats to enterprise information technology (IT) systems, access control and open systems, and product and system evaluation criteria. Policy considerations are examined with respect to the technical nature of enterprise security as represented by government regulations for software with cryptographic capability. The course develops the student's ability to assess enterprise security risk and to formulate technical recommendations in the areas of hardware and software. Aspects of security-related topics to be discussed include network security, cryptography, IT technology issues, and database security. The course addresses evolving Internet, Intranet, and Extranet security issues that affect enterprise security. Additional topics include access control (hardware and software), communications security, and the proper use of system software (operating system and utilities). The course addresses the social and legal problems of individual privacy in a data processing environment, as well as the computer “crime” potential of such systems. The class examines several data encryption algorithms.

Heinbuch, Podell, Tarr

695.411 Embedded Computer Systems—Vulnerabilities, Intrusions, and Protection Mechanisms
(formerly 605.433 Embedded Computer Systems—Vulnerabilities, Intrusions, and Protection Mechanisms)

While most of the world is preoccupied with high-profile network-based computer intrusions, this online course examines the potential for computer crime and the protection mechanisms employed in conjunction with the embedded computers that can be found within non-networked products (e.g., vending machines, automotive onboard computers, etc.). This course provides a basic understanding of embedded computer systems: differences with respect to network-based computers, programmability, exploitation methods, and current intrusion protection techniques along with material relating to computer hacking and vulnerability assessment. The course materials consist of a set of eight study modules and five case-study experiments (to be completed at a rate of one per week) and are augmented by online discussion forums moderated by the instructor. This course also includes online discussion forums that support greater depth of understanding of the materials presented within the study modules.

Prerequisite: Basic understanding and working knowledge of computer systems and access to Intel-based PC hosting a Microsoft Windows environment.

Kalb

695.421 Public Key Infrastructure and Managing E-Security
(formerly 605.432 Public Key Infrastructure and Managing E-Security)

This course describes public key technology and related security issues. Public Key Infrastructure (PKI) components are explained, and support for e-business and strong security services required by various applications is described. The role of digital certificates, the importance of certificate policy and certification practices, and essential aspects of key management that directly impact assurance levels and electronic services are addressed. The capabilities of PKI and digital signatures are examined in the context of the business environment, including applicable laws and regulations. The essential elements for successful PKI planning and rollout are discussed, and the state of PKI and interoperability issues are presented.

Mitchel

695.422 WWW Security
(formerly 605.434 WWW Security)

This course examines issues associated with making web applications secure. The principal focus is on server-side features such as CGI security, proper server configuration, and firewalls. The course also investigates protection of the connection between a client and server by encrypting the data stream (e.g., with SSL) or by keeping certain data private from the server system (e.g., via third-party transaction protocols like SET, or the DSS standard). Finally, the course explores client-side vulnerabilities associated with browsing the web, such as system penetration, information breach, identity theft, and denial-of-service attacks. Related topics such as malicious e-mails, web scripts, cookies, web bugs, spyware, and software security are also discussed. Labs and various server side demonstrations are included to enable students to probe more deeply into security issues and to develop and test potential solutions.
Graduate Programs

Information Assurance

Prerequisite: 605.412 Operating Systems or equivalent is recommended.

Ching, Parker

695.423 Intrusion Detection
(formerly 605.435 Intrusion Detection)

This course explores the use of intrusion detection systems (IDS) as part of an organization’s overall security posture. A variety of approaches, models, and algorithms along with the practical concerns of deploying IDS in an enterprise environment will be discussed. Topics include the history of IDS, anomaly and misuse detection for both host and network environments, and policy and legal issues surrounding the use of IDS. The use of ROC (receiver operating characteristic) curves to discuss false positives and missed detection tradeoffs as well as discussion of current research topics will provide a comprehensive understanding of when and how IDS can complement host and network security. TCPDump and Snort will be used in student assignments to collect and analyze potential attacks.

Longstaff

695.701 Cryptology
(formerly 605.732 Cryptology)

This course provides an introduction to the principles and practice of contemporary cryptology. It begins with a brief survey of classical cryptographic techniques that influenced the modern development of cryptology. The course then focuses on contemporary work: symmetric block ciphers and the Advanced Encryption Standard, public key cryptosystems, digital signatures, authentication protocols, and cryptographic hash functions. Pertinent ideas from complexity theory and computational number theory, which provide the foundation for much of the contemporary work in cryptology, are introduced, as needed, throughout the course.

May, Zaret

695.711 Java Security
(formerly 605.733 Java Security)

This course examines security topics in the context of the Java language with emphasis on security services such as confidentiality, integrity, authentication, access control, and non-repudiation. Specific topics include mobile code, mechanisms for building “sandboxes” (e.g., class loaders, namespaces, bytecode verification, access controllers, protection domains, policy files), symmetric and asymmetric data encryption, hashing, digital certificates, signature and MAC generation/verification, code signing, key management, SSL, and object-level protection. Various supporting APIs are also considered, including the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). Security APIs for XML and web services, such as XML Signature and XML Encryption, Security Assertions Markup Language (SAML), and Extensible Access Control Markup Language (XACML), are also surveyed. The course includes multiple programming assignments and a project.

Prerequisite: 605.481 -Distributed Development on the World Wide Web or equivalent. Basic knowledge of XML. 695.401 Foundations of Information Assurance or 695.422 WWW Security would be helpful but is not required.

Collins, Llanso

695.712 Authentication Technologies
(formerly 605.735 Authentication Technologies)

Authentication is the security process that validates the claimed identity of an entity, relying on one or more characteristics bound to that entity. An entity can be, but is not limited to, software, firmware, physical devices, and humans. The authentication process involves at least two entities: the one requiring authentication and the one to be authenticated. This course explores the underlying technology, the role of authentication in Information Assurance, evaluation of authentication processes, and the practical issues of authentication. Several different categories of authentication will be explored: Human-to-Machine (humans using biometrics, tokens and passwords for verification by a machine), Machine-to-Machine (one machine verifying another), and Machine-to-Human (humans verifying a machine). Case studies of authentication system implementations are presented. Related background is developed as needed, allowing students to gain a rich understanding of authentication techniques and the requirements for using them in a secure system. Students will present a research project that reflects an understanding of key issues in authentication.

Prerequisite: 695.421 Public Key Infrastructure and Managing E-Security is recommended.

Rhude

695.714 Reverse Engineering and Vulnerability Analysis

This course covers the fundamental techniques necessary to rapidly investigate source or binary code to discover unexpected or undesired behavior and to identify the conditions that could lead to a security fault. These techniques are used to categorize and prioritize software vulnerabilities, create patches and workarounds, and describe the fault such that an administrator has full knowledge of the risk while still making it difficult for a potential adversary to exploit the vulnerability. Techniques covered include the use static and dynamic reverse engineering tools, fault injection, and test case generation to investigate an operating system, sample programs, and malicious software.

Prerequisite: 695.742 Digital Forensics Technologies and Techniques.

Staff

695.721 Network Security
(formerly 605.731 Network Security)

This course explores concepts and issues pertaining to network security; examines methods and technologies for securing wired/wireless computer systems and communications network systems; and surveys wired/wireless network security
standards. Topics include Next Generation Networks (NGN) security architecture; Carrier Ethernet Transport (CET) architecture issues; applied cryptography for e-commerce; Wireless Local Area Network (WLAN) security; WLAN security countermeasures; wired/wireless Public Key Infrastructure (PKI); federated identity and network management; network security issues from IETF (Internet Engineering Task Force); NEMO (Network Mobility); NEA (Network Endpoint Assessment); and IPv6 transition/co-existence security issues. Selected network security technologies are introduced including Virtual Private Networks (VPN); IP/Multiprotocol and Generalized Multiprotocol Label Switching (G/MPLS); IP Telephony security issues; and Session Initiation Protocol (SIP) and SIP Security. Current technology issues that impact network security are also discussed. Examples include developments in WLAN; WiMAX (Worldwide Interoperability for Microwave Access), 3rd Generation Partnership Project (3GPP); IP Multimedia Subsystem (IMS) security; IPv6 peer-to-peer (P2P) services; VPN key management; and Cisco Unified Communications Manager (CallManager) Security Design Issues.

Prerequisite: 605.471 Principles of Data Communications Networks or equivalent.

Podell, Scoggins, Zieglar

695.741 Information Assurance Analysis

This course provides students with an overview of analysis as it applies to information assurance. Analysis is a fundamental part of the information assurance process and effective analysis informs policy, software development, network operations, and criminal investigations. To enable students to perform effective analysis, the focus of the course is on the analysis process and approach rather than on specific tools. Topics include the collection, use, and presentation of data from a variety of sources (e.g., raw network traffic data, traffic summary records, and log data collected from servers and firewalls). These data are used by a variety of analytical techniques, such as collection approach evaluation, population estimation, hypothesis testing, experiment construction and evaluation, and constructing evidence chains for forensic analysis. Students will construct and critique an analytical architecture, construct security experiments, and retroactively analyze events. The course will also cover selected non-technical ramifications of data collection and analysis, including anonymity, privacy, and legal constraints.

Prerequisites: Familiarity with basic statistical analysis. 695.423 Intrusion Detection or 695.411 Embedded Computer Systems—Vulnerabilities, Intrusions, and Protection Mechanisms is recommended.

Collins

695.742 Digital Forensics Technologies and Techniques

Digital forensics focuses on the acquisition, identification, attribution, and analysis of digital evidence of an event occurring in a computer or network. This course provides a broader scientific understanding of the technologies and techniques used to perform digital forensics. In particular, various signature extraction techniques, detection, classification, and retrieval of forensically interesting patterns will be introduced. This will be complemented by studying fundamental concepts of data processing technologies like compression, watermarking, steganography, cryptography, and multiresolution analysis. Emerging standards along with issues driving the changing nature of this topic will be explored. Anti-forensics techniques that are used to counter forensic analysis will also be covered. Students will be exposed to relevant theory, programming practice, case studies, and contemporary literature on the subject.

Prerequisite: 605.412 Operating Systems.

Ahmed

695.791 Information Assurance Architectures and Technologies

(formerly 605.734 Information Assurance Architectures and Technologies)

Once only the concern of the military and financial communities, security has become a critical issue for reliable information systems. As a result, vendors are offering an array of security features and products to address system security concerns. Yet, as more security features and products become available, the number of system security failures continues to rise. The question that must be asked is how much can the security products be trusted to perform correctly and address system security requirements? This course will discuss the assurance issues associated with security technology ranging from formal models to design and development. The evolution of security criteria will also be addressed, from the development of the Orange Book to the Common Criteria, and the impact of those criteria on security developments will be described. High-assurance security projects will be reviewed to understand their security architectures, features, and development. These projects will be compared and contrasted with current commercial security products and efforts, such as Microsoft’s Trustworthy Computing effort. The course will also discuss how to build systems that avoid the various types of flaws which exist in current systems (e.g., buffer overflows, race conditions, and covert channels).

Prerequisite: 695.401 Foundations of Information Assurance is recommended but not required.

Zieglar

695.801 Independent Study in Information Assurance I

This course permits graduate students in information assurance to work with a faculty mentor to explore a topic in depth or conduct research in selected areas. Requirements for completion include submission of a significant paper or project.

Prerequisites: Seven information assurance graduate courses including the foundation courses, three concentration area courses, and two courses numbered at the 700 level or admis-
sion to the advanced certificate for post-master’s study. Students must also have permission from the instructor.

695.802 Independent Study in Information Assurance II

Students wishing to take a second independent study in information assurance should sign up for this course.

Prerequisites: 695.801 Independent Study in Information Assurance I and permission of a faculty mentor, the student's academic advisor, and the program chair.

550.438 Statistical Methods for Intrusion Detection

This course will give an introduction to the data and methodologies of computer intrusion detection. The focus will be on statistical and machine learning approaches to detection of attacks on computers. Topics will include network monitoring and analysis, including techniques for studying the Internet, and estimating the number and severity of attacks; network-based attacks such as probes and denial of service attacks; host-based attacks such as buffer overflows and race conditions; malicious code such as viruses and worms. Statistical pattern recognition methods will be described for the detection and classification of attacks. Techniques for the visualization of network data will be discussed. The book will be supplemented with readings of various articles.

Prerequisites: 550.310 or 550.311, or equivalent.

Marchette

600.642 Advanced Cryptographic Protocols

This course will focus on advanced cryptographic protocols with an emphasis on open research problems (Applications).

Prerequisites: 600.442, 600.443 or permission of the instructor.

Ateniese

600.643 Advanced Topics in Computer Security

Topics vary but focus mainly on network perimeter protection, host-level protection, authentication technologies, intellectual property protection, formal analysis techniques, intrusion detection, and similarly advanced topics.

Prerequisites: any 600-level course in security, including 600.442/443/424 or permission of instructor.

Rubin

600.648 Secure Software Engineering

This course examines best practices for designing secure systems, with particular emphasis on software engineering. We review various criteria for designing secure systems and apply those principles to real systems. Students will be exposed to various techniques for analyzing system properties and for verifying program correctness, and will be expected to use that knowledge in examining existing protocols. Topics to be covered include the limits of techniques for software protection, such as code obfuscation, tamper-proofing and watermarking, analysis of software based attacks (and defenses), timing attacks and leakage of information, type safety, and capability systems. A course project is required.

Monrose

650.457 Computer Forensics

This course introduces students to the field of computer forensics and it will focus on the various contemporary policy issues and applied technologies. Topics to be covered include legal and regulatory issues, investigation techniques, data analysis approaches, and incident response procedures for Windows and UNIX systems. Homework in this course will relate to laboratory assignments and research exercises. Students should also expect that a group project will be integrated into this course.

Lavine

650.459 Software Vulnerability Analysis

This course will examine vulnerabilities in C source, stack overflows, writing shell code, etc. Also, vulnerabilities in web applications: SQL injection, cookies, forceful browsing, as well as vulnerabilities in C binary fuzzing, and exploit development without source, among other topics.

Stubblefield
Information Systems Engineering

With information technology permeating all aspects of modern society, the creation and operation of contemporary information systems is an immensely complex challenge for all organizations. Information systems engineering (ISE) is a multi-disciplinary program that focuses on the analysis, design, development, and integration of systems that enable the effective and efficient use of information in today’s highly dynamic environment. Building on the disciplines of software engineering, systems engineering, information assurance, and networking, ISE employs techniques and methodologies that allow practitioners to create and manage complex information systems to solve real-world problems.

The Master of Science in Information Systems Engineering is designed to appeal to a wide range of individuals. The program balances theory with practice, offers an extensive set of traditional and state-of-the-art courses, and provides the flexibility to accommodate students with various backgrounds. As a result, the program will appeal to engineers and scientists seeking an applied technology program designed to enhance their ability to develop real-world information systems. It will also appeal to technically oriented business people looking to acquire a deeper understanding of information technology to manage systems and resources more effectively. By providing a broad-based education in the field, the ISE program will allow students to design large-scale information systems, develop efficient network architectures, conduct complex systems analyses, and create sophisticated distributed and secure systems.

Courses are offered across a wide range of topic areas, including software engineering, systems engineering, information assurance, network engineering, distributed computing, information management, and human-computer interaction. Research and development interests of the faculty span the spectrum of information systems engineering.

Students may take courses at the Applied Physics Laboratory, the Montgomery County Campus, the Dorsey Center, and online. Extensive computing facilities are available and can be reached from any of the sites or from home. A variety of software systems, applications, development tools, and specialized lab facilities are also supported.

Program Committee

Ralph D. Semmel, Program Chair
Principal Professional Staff
Applied Physics Laboratory

John A. Piorkowski, Program Vice Chair
Principal Professional Staff
Applied Physics Laboratory

Eleanor Boyle Chlan, Associate Program Chair
Senior Lecturer in Computer Science
Whiting School of Engineering

Robert S. Grossman
Principal Professional Staff
Applied Physics Laboratory

Marty Hall
President
Coreservlets.com, Inc.

Thomas A. Longstaff
Senior Professional Staff
Applied Physics Laboratory

Horace Malcolm
Principal Professional Staff
Applied Physics Laboratory

Hashmat Malik
President
Software Productivity Strategists, Inc.

Richard Nisiporent
Senior Principal Engineer
MITRE Corporation

John Sadawsky
Senior Associate
Zeta Associates, Inc.

Vincent G. Sigillito
Principal Professional Staff (ret.)
Applied Physics Laboratory

Scott Smith
Professor and Chair, Computer Science Department
Whiting School of Engineering

J. Miller Whisnant
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program, as stated in this catalog. In addition, information systems engineering master’s degree candidates must have taken one year of college math including one semester of calculus or discrete mathematics and a course in programming using a modern programming language such as Java or C++. Data structures may also be required, as determined by an advisor, for students seeking to take selected courses from computer science and information assurance.

Applicants who have not taken the prerequisite undergraduate courses may satisfy admission requirements by completing the specified courses with grades of A or B. The program offers the following undergraduate courses, which may be taken as needed to satisfy the prerequisites:

- 605.201 Introduction to Programming Using Java
- 605.202 Data Structures
- 605.203 Discrete Mathematics
Advanced Certificate for Post-Master’s Study in Information Systems Engineering

Applicants who have already completed a master’s degree in a technical discipline are eligible to apply for the advanced certificate for Post Master’s Study in Information Systems Engineering. Six one-term courses must be completed with grades of A or B within three years. At least five of the six courses must be information systems engineering courses and at least two of the information systems engineering courses must be at the 700 level. Students are allowed to take one elective course, subject to advisor approval.

Graduate Certificate in Information Systems Engineering

The Graduate Certificate is directed towards students who may not be currently interested in a Master’s degree but are interested in taking specific graduate courses. Five one-term courses must be completed with grades of A or B within three years. At least four of the five courses must be information systems engineering courses. Students are allowed to take one elective course, subject to advisor approval. If the student should decide to pursue the full master’s degree, all courses will apply to the master’s degree provided they meet program requirements, fall within the five-year time limit, and the student declares his or her intention prior to the award of the certificate. Applicants to the Graduate Certificate in Information Systems Engineering must meet the general requirements for admission to a graduate program and must also meet the prerequisites for admission to Information Systems Engineering.

Course Requirements for Master’s Degree

Ten courses, approved by an advisor, must be completed within five years. At least eight courses must be from the ISE curriculum, which includes ISE courses as well as selected courses from computer science, information assurance, systems engineering and technical management. Three courses must be from the same concentration area and at least two courses must be 700-level. No more than one course with a grade of C, and no course with a grade lower than C, may be counted toward the degree.

Students may take up to two electives from other Whitman School programs. Students who take electives from other programs must meet the specific course and program requirements listed for each course.

Graduate students not pursuing a master’s degree in information systems engineering should consult with their advisor to determine what courses must be successfully completed before 400- or 700-level ISE courses may be taken. 700-level courses are open only to students who have been admitted with graduate status.

Please refer to the course schedule each term for dates, times, locations, fees, and instructors.

Foundation Courses

All students working toward a master’s degree in information systems engineering are required to take the following three foundation courses before taking other graduate courses:

635.401 Foundations of Information Systems Engineering
605.401 Foundations of Software Engineering
695.401 Foundations of Information Assurance

Foundation Course Waivers

One or more foundation courses can be waived if a student has received an A or B in equivalent courses. In this case, the student may replace the waived foundation courses with the same number of other graduate courses, and may take these courses after all remaining foundation course requirements have been satisfied.

Graduate Courses by Concentration Area

The ISE concentration areas—including all applicable courses from ISE, computer science, information assurance, systems engineering, and technical management—are as follows:

I. Software Engineering

605.401 Foundations of Software Engineering
605.402 Software Analysis and Design
605.404 Object Oriented Programming with C++
605.407 Agile Software Development Methods
605.408 Software Project Management
605.701 Software Systems Engineering
605.702 Service-Oriented Architecture
605.703 Component-Based Software Engineering
605.704 Object-Oriented Analysis and Design
605.708 Tools and Techniques of Software Project Management

II. Systems Engineering

635.401 Foundations of Information Systems Engineering
645.462 Introduction to Systems Engineering
645.467 Management of Systems Projects
645.742 Management of Complex Systems
645.753 Enterprise Systems Engineering
645.757 Foundations of Modeling & Simulation in Systems Engineering
645.761 Systems Architecting
645.767 System Conceptual Design
645.771 System of Systems Engineering
595.460 Introduction to Project Management
595.763 Software Engineering Management

III. Information Assurance

635.476 Information Systems Security
695.401 Foundations of Information Assurance
Course Descriptions

635.401 Foundations of Information Systems Engineering
Creating and operating large-scale information systems requires a holistic approach that manages the blending of software, hardware, networks, and security inherent in modern systems. This course introduces key elements and processes required for designing, analyzing, developing, and integrating complex information systems. The course focuses on the systems engineering approach with specific emphasis on design, development, and deployment. Topics covered include requirements engineering, architecture development, security engineering, cost-benefit analysis, information and networking technologies, and operations.

Chavis, Osborne, Smeltzer

635.411 Principles of Network Engineering
(formerly 635.411 Foundations of Networking and Telecommunications)
This course provides an overview of networking and telecommunications. Topics include analog and digital voice; data, imaging, and video communications fundamentals, including signaling and data transmissions; and basic terminology. The course also covers networking and telecommunication tech-
635.412 Local and Wide Area Network Technologies
This course provides an in-depth presentation of the fundamental technology, architecture, and protocols necessary for local- and wide-area networking. It covers network topology, transmission media, media access control, interconnection devices, and fundamental communications standards such as IEEE 802. It addresses important LAN and WAN concepts such as switching, virtual LANs, DWDM, and interconnection of different LAN and WAN technologies. It also examines typical communication protocols used in LAN and WAN systems such as Ethernet, Fibre Channel, SONET, xDSL, cable modems, and ATM/Frame Relay.

Prerequisite: 635.411 Principles of Network Engineering

635.413 IP Networking and Applications
This course covers the underlying networking protocols and technologies upon which the Internet and other IP-based networks are built. The TCP/IP suite, including IP, TCP, UDP, and ICMP are studied in detail. Routing protocols for IP-based networks are explored including BGP, OSPF, and IGRP; ARP, DHCP and the Domain Name Service and other important utility protocols are also discussed. A comprehensive survey is provided of the applications that are being implemented over IP-based networks, including secure electronic commerce, streaming media, Voice over IP, content distribution, and future directions. In addition to textbook assignments, students will have assigned readings and research from the web.

Prerequisite: 635.411 Principles of Network Engineering

635.414 Wireless Networking
This course provides an overview of emerging and existing technologies in wireless networking from the perspectives of wireless telephony, wireless data networking, and sensor networking. The course covers cellular communications technologies as well as the IEEE 802 wireless networking technology family. Key network layer technologies will be discussed, including Mobile IP and NEtwork MObility (NEMO), layer-2 mesh routing approaches, and layer-3 Mobile Ad-hoc Network (MANET) routing approaches. Security, management, and key performance issues of wireless networks will also be presented.

Prerequisite: 635.411 Principles of Network Engineering

635.421 Principles of Decision Support Systems
(formerly 635.421 Foundations of Decision Support Systems)
This course focuses on the use and application of information systems to support the decision-making process. Knowledge-based systems, neural networks, expert systems, electronic meeting systems, group systems and web-based systems are discussed as a basis for designing and developing highly effective decision support systems. Data models, interactive processes, knowledge-based approaches and integration with database systems are also described. Theoretical concepts are applied to real-world applications.

Felicson, Nag

635.444 XML: Technology and Applications
The course covers the concepts, technology, and applications of XML (Extensible Markup Language), especially to Web-based technologies. The course concentrates on XML fundamentals and associated technologies, and processing XML using Java. Topics covered include the XML Specification; XML Namespaces; Document Type Definitions (DTDs); XML Schemas; XML Transformation (XSLT); XML Links and XML Pointers; and parsing XML using the Document Object Model (DOM) and Simple API (Application Programming Interface) for XML (SAX), the Java API for XML Processing (JAXP), and the Java Document Object Model (JDOM). Additional topics may be drawn from Cascading Style Sheets (CSS); XQuery; the Simple Object-Oriented Protocol (SOAP); Web Services Description Language (WSDL); Universal Description, Discovery and Integration (UDDI); applications of XML such as RDF; and the architecture of Web Service, EAI, and B2B systems using XML.

Prerequisite: 605.481 Distributed Development on the World Wide Web or equivalent Java experience.

Chittargi, Silberberg

635.461 Principles of Human-Computer Interaction
(formerly 635.721 Human-Computer Interaction)
Well-designed human-computer interaction is critical to the success of computer and information systems. This course focuses on the HCI design process and covers the underlying scientific principles, HCI design methodology, and the user-interface technology used to implement HCI. Topics include human cognition, HCI theories, user observation and task analysis, prototyping and evaluation techniques, user interface modalities and graphical user interface components, and accessibility. Selected additional topics may include HCI in web site design, support of collaborative work, human interaction with automation, and ubiquitous computing. Student design projects are an integral part of the course. Reading the current HCI research literature is also required.

Montemayer

635.476 Information Systems Security
This course describes the systems security engineering process with a focus on security during the design, implementation,
and operation of information systems. The course will present the processes that have been defined and published by the federal government for designing and certifying secure information systems. Examples include defense-in-depth, the Information Assurance Technical Framework and the DITSCAP. There will also be material on commercial and government security products available and the Common Criteria Project for evaluating security products.

Boudra

635.482 Web Site Development
This course covers the design and implementation of web sites. Various web standards, as developed by the World Wide Web Consortium and by browser manufacturers are studied. HTML 4.01 and XHTML 1.0 specifications are covered, including topics such as text control, images, hypertext links, tables, frames and embedded objects (e.g., video and applets). Cascading Style Sheets (CSS1 and CSS2), a web scripting language (such as Javascript), CGI programming, and their use in Dynamic HTML are also covered. Design and development topics include ease of navigation, download time, maintaining a consistent look and feel across multiple pages, making a web site work well across multiple browsers, and web server selection and configuration.

Ezigbo, Noble

635.731 Distributed Architectures
This course explores technologies for enabling distributed systems. Performance, scalability, security, concurrency, synchronization, error handling, and open standards in the context of heterogeneous systems are discussed as a basis for making the distributed nature of systems transparent to users. Key areas covered include client-server systems, coordination and agreement, data encryption, and communications. Students will also investigate advanced topics such as distributed artificial intelligence, mobile agents, storage area networking, distributed databases, and device discovery.

Anderson

635.792 Management of Innovation
A critical issue for entrepreneurs and technical managers is how to translate opportunity into competitive advantage. This course explores the management of innovation, including the technical transition of applied R&D into products, the planning and launching of new products, and product management. Management of discontinuous technologies will be explored. The impact of competition by the introduction of new discontinuous technology will be addressed. Managing engineers through the creative process, as well as innovation and technological evolution will be covered. The course includes both formal and guest lectures. Case studies will be used as an important learning vehicle.

Addison and Husick

635.795 Information Systems Engineering Capstone Project
This course is designed for students who would like to conduct a major independent project involving a substantial enterprise information system design that builds upon elements of the ISE curriculum. The project includes requirements analysis, IT architecture design, network design, software integration, decision support applications, and deployment planning. Interim deliverables include presentations to the course advisors. Project proposals are required and a mentor will be assigned to the student.

Prerequisites: Completion of eight courses in the ISE curriculum, including all ISE foundation courses.

Note: Students may not receive graduate credit for both 635.795 and 635.802 Independent Study in Information Systems Engineering II.

Staff

635.801 Independent Study in Information Systems Engineering I
This course permits graduate students in Information Systems Engineering to work with a faculty mentor to explore a topic in depth or conduct research in selected areas. Requirements for completion include submission of a significant paper.

Prerequisites: Seven IS&T graduate courses including the foundation courses, three concentration area courses, and two courses numbered 635.7xx; or admission to the advanced certificate for post-master’s study. Students must also have permission of a faculty mentor, the student’s academic advisor, and the program chair.

635.802 Independent Study in Information Systems Engineering II
Students wishing to take a second independent study in information systems engineering should sign up for this course.

Prerequisites: 635.801 Independent Study in Information Systems Engineering I and permission of a faculty mentor, the student’s academic advisor, and the program chair.

Note: Students may not receive graduate credit for both 635.802 and 635.795 Information Systems Engineering Capstone Project.
Materials Science and Engineering

Materials science and engineering is concerned with the structure, processing, properties, and applications of materials. Materials scientists investigate how the structure and composition of materials affect their properties and performance. Materials engineers develop, modify, and apply materials to specific technological applications.

The JHU Department of Materials Science and Engineering offers three different graduate degrees: the Ph.D., the M.S.E. (Master of Science in Engineering), and the M.M.S.E. (Master of Materials Science and Engineering). The M.M.S.E. is offered through the Engineering for Professionals program and is described in detail below. Information about the Ph.D. and M.S.E. can be obtained from the Arts and Sciences/Engineering undergraduate and graduate programs catalog.

The M.M.S.E. degree is designed specifically as a part-time degree that can be completed by taking courses in the late afternoon or evening. It is viewed as a terminal degree and is generally not considered sufficient preparation to continue toward the Ph.D. Those interested in pursuing a Ph.D. degree should consider applying to the department for the M.S.E. degree. Please note that the application materials for the Ph.D. or M.S.E. degrees are different from the EP application used in applying for the M.M.S.E. degree.

The Department of Materials Science and Engineering has active research programs in biomaterials, nanomaterials and nanotechnology, electrochemistry, thin films, mechanics of materials, electronic materials, and physical metallurgy.

Program Committee

Robert C. Cammarata, Program Chair
Professor, Materials Science and Engineering
Whiting School of Engineering

James B. Spicer
Professor, Materials Science and Engineering
Whiting School of Engineering

Jennifer Sample
Senior Professional Staff
Applied Physics Laboratory

Timothy Foecke
Staff Materials Scientist
National Institute of Standards & Technology

Admission Requirements

The Master of Materials Science and Engineering (M.M.S.E.) program is best suited to students who have received undergraduate degrees in engineering or science. Applicants are expected to have completed a mathematics sequence through differential equations and courses in general physics and chemistry. Applicants must meet the general requirements for graduate study outlined in this catalog. The program committee is willing to consider applicants who do not meet the general admission requirements in exceptional cases.

Individuals who desire a non-degree status for taking courses may request consideration for Special Student status. Regardless of level, courses taken while a Special Student do not necessarily count toward fulfillment of degree requirements if the student is subsequently accepted as a degree candidate. This status is normally extended for one year with reapplication required for continuation.

Course Requirements

The Master of Materials Science and Engineering degree is awarded after successful completion of 10 one-term courses within five years. All students are required to take 515.401 Structure and Properties of Materials and 515.402 Thermodynamics and Kinetics. Of the remaining eight electives, at least one must be 600-level or higher. Courses offered by the Department of Materials Science and Engineering are acceptable as electives. Students interested in taking the 515.730-731 Materials Science and Engineering Project must get prior approval from the departmental coordinator and be assigned an advisor.

Below is a list of acceptable course electives offered by other departments. Students wishing to take a course not on the list to satisfy the degree requirements must get prior approval from the departmental coordinator. The program of 10 courses that the student plans to pursue must be approved by the department coordinator. Students may also select electives from the courses listed below under the Nanotechnology Option.

525.406 Electronic Materials
525.407 Introduction to Electronic Packaging
530.753 Fatigue
535.406 Advanced Strength of Materials
535.720 Analysis and Design of Composite Structures
540.426 Introduction to Biomacromolecules
540.440 Micro and Nanotechnology
560.729 Structural Mechanics
585.409 Mathematical Methods for Applied Biomedical Engineering
585.608 Biomaterials
585.609 Cell Mechanics
585.618 Biological Fluid and Solid Mechanics
615.441 Mathematical Methods for Physics and Engineering
615.451 Statistical Mechanics and Thermodynamics
615.746 Nanoelectronics: Physics and Devices
615.757 Solid State Physics
615.760 Physics of Semiconductor Devices
615.768 Superlattices and Heterostructure Devices
Nanotechnology Option

Nanotechnology Course Requirements

Students enrolled in the Master of Science in Materials Science and Engineering program can elect to pursue a special Nanotechnology Option. Please see page 135 for a full description of this option.

Course Descriptions

515.401 Structure and Properties of Materials
Topics include types of materials, bonding in solids, basic crystallography, crystal structures, tensor properties of materials, diffraction methods, crystal defects, and amorphous materials.

Staff

515.402 Thermodynamics and Kinetics of Materials
Topics include laws of thermodynamics, equilibrium of single and multiphase systems, chemical thermodynamics, statistical thermodynamics of solid solutions, equilibrium phase diagrams, chemical kinetics, diffusion in solids, nucleation and growth processes, coarsening, and glass transition.

Staff

515.416 Introduction to Nanotechnology
Nanoscale science and nanotechnology are broad, interdisciplinary areas, encompassing not just materials science but everything from biochemistry to electrical engineering and more. This will be a survey course introducing some of the fundamental principles behind nanotechnology and nanomaterials, as well as applications of nanotechnology. The role of solid state physics and chemistry in nanotech will be emphasized. Nanoscale tools such as surface probe and atomic force microscopy, nanolithography, and special topics such as molecular electronics will also be covered.

Sample

515.417 Nanomaterials
This course will take an in-depth look at nanomaterials discussed in Introduction to Nanotechnology. However, this course stands alone with no prerequisite. Theory and concepts of nanomaterials will be covered, including the chemistry and physics of nanomaterials. The course will also focus on major classes of nanomaterials, including carbon nanotubes, nanostructured materials, nanowires, nanoparticles, nanoclays, and other nanomaterials. Applications of nanomaterials to technology areas of interest to the class will also be discussed.

Sample, Zhang

515.730-731 Materials Science and Engineering Project
This course is an individually tailored, supervised project that offers research experience through work on a special problem related to each student’s field of interest. On completion of this course, a written essay must be submitted. Final approval of the essay will be given by the faculty advisor.

Prerequisite: All other course work should be completed before this project begins (or at least completed concurrently with this project). Consent of advisor is required.

Note: This course is available only to students in the Master of Materials Science and Engineering program.

510.407 Biomaterials II
This course focuses on the interaction of biomaterials with the biological system and applications of biomaterials. Topics include host reactions to biomaterials and their evaluation, cell-biomaterials interaction, biomaterials for tissue engineering applications, biomaterials for controlled drug and gene delivery, biomaterials for cardiovascular applications, biomaterials for orthopedic applications, and biomaterials for artificial organs.

Note: Also listed as 510.607.

Mao

510.420 Topics in Biomaterials
This course concentrates on molecular structure-property relationships in biomaterials. Special focus will be given to polymers, hydrogels, biodegradable materials, and natural materials. The design of artificial biomaterials for biosensors, drug delivery, and medical implants is considered along with the factors that influence the biocompatibility of these materials.

Prerequisite: Introductory Chemistry.

Yu

510.422 Micro- and Nano-Structured Materials and Devices
Almost every materials property changes with scale. We will examine ways to make micro- and nano-structured materials and discuss their mechanical, electrical, and chemical properties. Topics include the physics and chemistry of physical vapor deposition, thin film patterning, and microstructural characterization. Particular attention will be paid to current technologies, including computer chips and memory, thin film sensors, diffusion barriers, protective coatings, and microelectromechanical devices (MEMS).

Note: Also listed as 510.622.
510.426 Biomolecular Materials
Topics covered by this course include structure and function of cellular molecules (lipids, nucleic acids, proteins, and carbohydrates); structure and function of molecular machines (enzymes for biosynthesis, motors, pumps); protein synthesis using recombinant nucleic acid methods; advanced materials development; interactions of biopolymers, lipid membranes, and their complexes; mean field theories, fluctuation, and correlation effects; self-assembly in biomolecular materials; biomedical applications; characterization techniques.

Prerequisite: 510.601 or permission of instructor.

Yu, Hristova

510.604 Mechanical Properties of Materials
This course introduces the properties and mechanisms that control the mechanical performance of materials. Topics include mechanical testing, tensor description of stress and strain, isotropic and anisotropic elasticity, plastic behavior of crystals, dislocation theory, mechanisms of microscopic plasticity, creep, fracture, and deformation and fracture of polymers.

Prerequisite: 510.601 or permission of instructor.

Weihs

510.605 Electronic, Optical, and Magnetic Properties of Materials
This course is an overview of electrical, optical, and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic processes. Topics to be covered include quantum mechanical structure of solids including electronic band structure; electrical, thermal and ionic conduction; response of materials to electromagnetic fields including dielectric permittivity, ferroelectric materials and piezoelectricity; magnetic behavior including paramagnetism and ferromagnetism, magnetic permeability, magnetic domains, and magnetostriction; interactions of electromagnetic radiation with materials (absorption, reflection, refraction, and scattering, electro- and magneto-optic effects); and superconductivity. Emphasis will be placed on both fundamental principles and applications in contemporary materials technologies.

Prerequisite: 510.601.

Spicer

510.606 Chemical and Biological Properties of Materials
This course introduces the chemical and biological properties of organic and inorganic materials. Topics include an introduction to polymer science, polymer synthesis, chemical synthesis and modification of inorganic materials, biomaterialization, biosynthesis and properties of natural materials (proteins, DNA, and polysaccharides), structure-property relationships in polymeric materials (synthetic polymers and structural proteins), and materials for biomedical applications.

Prerequisite: Undergraduate chemistry and biology, or permission of instructor.

510.607 Biomaterials II
This course focuses on the interaction of biomaterials with the biological system and applications of biomaterials. Topics include host reactions to biomaterials and their evaluation, cell-biomaterials interaction, biomaterials for tissue engineering applications, biomaterials for controlled drug and gene delivery, biomaterials for cardiovascular applications, biomaterials for orthopedic applications, and biomaterials for artificial organs.

510.608 Electrochemistry
Topics covered by this course include thermodynamics of electrochemical interfaces, including electrochemical potential, the Nernst equation, ion-solvent interactions, and double layer theory; charge transfer kinetics for activation and diffusion controlled processes; and analysis of kinetics at various electrodes, including redox reactions, metal-ion electrodes, and semiconductor electrodes. Electroanalytical techniques are also discussed, including those related to bioelectrochemistry and semiconductor electrochemistry. Selected reactions of technological importance are evaluated, including the hydrogen evolution reaction, oxygen reduction, electrodeposition, and energy generation and storage.

Undergraduate prerequisite: Introductory chemistry or permission of instructor.

Searson

510.609 Electrochemistry Lab
A series of laboratory experiments is used to illustrate the principles of electrochemistry.

Prerequisite: 510.608 or permission of instructor.

Searson

510.610 Chemistry and Physics of Semiconductor Surfaces
Basic principles of bonding, thermodynamics of crystals, surface energy, space charge effects, and potential distributions at phase boundaries are reviewed. Processes related to solid/liquid interfaces including electron transfer, photoeffects, adsorption, catalysis, etching, and oxide formation are covered. Relevant experimental methods, including surface analytical techniques, are reviewed. Examples of applications, including photovoltaic devices and solar cells, are discussed.

Searson

510.611-612 Solid State Physics
This course provides an introduction to solid state physics for advanced undergraduates and graduate students in physical science and engineering. Topics include crystal structure of solids; band theory; thermal, optical, and electronic properties; transport and magnetic properties of metals, semicon-
ductors, and insulators; and superconductivity. The concepts and applications of solid state principles in modern electronic, optical, and structural materials are also discussed.

Poehler

510.616 Applications of X-Ray Diffraction
This course introduces the student to crystal structure and what can be learned about materials by a variety of X-ray diffraction, radiographic, topographic and tomographic techniques. The techniques covered include single crystal orientation, single crystal perfection, structure of polycrystalline materials, compositional analysis, and phase identification. An overview will be presented of research efforts illustrating how rapid X-ray diffraction imaging has served to study the plastic deformation of metals, grain boundary migration during recrystallization, and the structure of explosively loaded materials. The utility of X-ray topographic imaging for qualitative assessment of single crystals will be discussed using specific examples of topographic images acquired from nickel-based superalloy turbine blades, gallium-arsenide wafers, and quartz crystal resonators. Finally, the radio-graphic aspect of X-ray imaging will be considered with illustrations given of the application of computer-assisted X-ray tomography. The course will include both classroom lectures and laboratory exercises.

Hufnagel

510.617 Advanced Topics in Biomaterials
This course reviews recent advances in biomaterials focusing on the design principles in polymeric materials and scaffolds. It will cover topics from molecular designs of polymeric biomaterials, materials surface engineering, and processing of polymeric scaffolds to manipulation of cellular behaviors through materials engineering. Specific examples in cell and tissue engineering and drug and gene delivery will be discussed.

Hufnagel

510.619 Biopolymers Synthesis
In this course, we will review the current synthetic methods for preparing biopolymers of both synthetic and natural origin. The class will focus mainly on polypeptides and polysaccharides, but natural polyesters and polynucleotides (DNA and RNA) will be covered as well. Some of the main topics are solid phase peptide synthesis, ring-opening polymerization for polypeptide synthesis, recombinant DNA and bacterial protein synthesis, bacterial production of biodegradable polyester, and chemical and biological engineering of polysaccharides.

Yu

510.620 Metallic Glasses
This course covers the structure, properties, and processing of metallic glasses and amorphous thin films. Particular emphasis is on structural characterization of amorphous materials, including X-ray and neutron scattering, EXAFS, small-angle scattering, and anomalous X-ray scattering. Also covered are phase transformations in amorphous materials, including phase separation and crystallization; mechanical and magnetic properties of metallic glasses; thermodynamics; and kinetic considerations in the production of metallic glasses.

Hufnagel

510.622 Micro- and Nano-Structured Materials and Devices
Almost every materials property changes with scale. We will examine ways to make micro and nano-structured materials and discuss their mechanical, electrical, and chemical properties. Topics include the physics and chemistry of physical vapor deposition, thin film patterning, and microstructural characterization. Particular attention will be paid to current technologies including computer chips and memory, thin film sensors, diffusion barriers, protective coatings, and microelectromechanical devices (MEMS).

Ma

510.624 Theory of X-ray Diffraction
This course provides an introduction to diffraction theory and the uses of diffraction in structural characterization of materials. Topics include X-ray scattering by atoms, kinematic theory, Fourier series methods, diffraction from single crystals and polycrystalline materials, diffraction from multilayers, scattering by liquids and amorphous solids, small-angle scattering, and dynamic theory.

Prerequisite: 510.601.

Hufnagel

510.626 Biomolecular Materials
Topics covered by this course include structure and function of cellular molecules (lips, nucleic acids, proteins, and carbohydrates); structure and function of molecular machines (enzymes for biosynthesis, motors, pumps); protein synthesis using recombinant nucleic acid methods; advanced materials development; interactions of biopolymers, lipid membranes, and their complexes; mean field theories, fluctuation, and correlation effects; self-assembly in biomolecular materials; biomedicai applications; and characterization techniques.

Note: Also listed as 510.426.

Hristova

510.636 Electronic Materials Science
This course provides an introduction to semiconductor device physics, including band structure, current flow, capacitance, and recombination. Also covered are barriers and junctions, transistors, crystallography and crystalline defects; processing (ion implantation, thermal oxidation, metallization, reaction kinetics, and diffusion barriers); heterostructures and heteroepitaxy; and assembly and packaging.

Searson

510.650 Principles of Quantum Physical Interactions
Topics covered by this course include foundational quantum-mechanical study of nanometer-scale electronic and optoelectronic materials structures, principles of quantum
physics, stationary-state eigenfunctions and eigenvalues for one-dimensional potentials, interaction with the electromagnetic field, electronic conduction in solids, surface and interface effects, tunneling microscopy, and spectroscopy.

Prerequisites: 110.201 and 110.302 or equivalent, 510.311.

Spicer

510.657 Materials Science of Thin Films

The processing, structure, and properties of thin films are discussed emphasizing current areas of scientific and technological interest. Topics include elements of vacuum science and technology; chemical and physical vapor deposition processes; film growth and microstructure; chemical and microstructural characterization methods; epitaxy; mechanical properties such as internal stresses, adhesion, and strength; and technological applications such as superlattices, diffusion barriers, and protective coatings.

Weihs

510.661 Alloy Stability and Phase Diagrams

This course examines the fundamentals of alloy theory and phase diagram modeling to understand the formation, stability, and evolution of alloy phases and microstructures. Topics to be covered include structures of intermediate alloy phases such as electron phases, Laves phases, interstitial phases, valency compounds, and superlattices; stability criteria of solid solutions and intermediate alloy phases, including Hume-Rothery rules, theories of ordering, electronic theories of solid solubility and alloy stability, and elastic instability; thermodynamic and kinetic analysis of phase and microstructural instability due to different driving forces: chemical, strain, interfacial, gradient, etc.; balance of kinetic stability and thermodynamic instability: formation of highly metastable or unstable phases far from equilibrium; and calculations of the phase stability ranges in terms of equilibrium or metastable binary or multicomponent phase diagrams using CALPHAD modeling.

Ma

510.665 Advanced Topics in Thermodynamics of Materials

Selected areas of thermodynamics will be examined in depth with the aim of understanding the ideas and assumptions underlying results of importance to materials science. Attempts will be made to be as rigorous as possible without losing sight of the physical meaning. The theories and models obtained will be evaluated critically to determine their validity and limitations. Topics to be covered include review of the traditional development of the laws of thermodynamics; alternate formulations (Carathéodory, Truesdell, single axiom approach); equilibrium thermodynamics of Gibbs; thermodynamics of solids; thermodynamics of surfaces; principles of statistical thermodynamics; critical phenomena; third law; and nonequilibrium thermodynamics (“rational” thermodynamics, thermodynamics of irreversible processes, absolute reaction rates).

Cammarata
Materials and Condensed Matter Option

Materials and condensed matter, technical areas crossing the boundaries of physics and various engineering disciplines, are of growing importance in all our technical activities ranging from sensor development to space science. Although there is a separate degree in materials science and engineering, students can elect to pursue a concentration in materials and condensed matter from the Applied Physics curriculum. This concentration offers students the opportunity to become well grounded in the principles of physics and then apply this knowledge to study leading-edge topics in materials and condensed matter. To do this, students can complete a combination of courses from the Applied Physics, Materials Science and Engineering, Electrical and Computer Engineering, and Chemical and Biomolecular Engineering curricula. The wide variety of courses from these four areas allows students, working with advisors, to structure a program meeting their professional development needs in materials.

Admission Requirements
Applicants must meet the general requirements for admission to a graduate program outlined in this catalog. In addition, applicants must meet the specific program requirements for Applied Physics (see Graduate Admissions). The special option in materials and condensed matter will be noted on the student’s transcript.

Course Requirements
A total of 10 one-term courses must be completed. Students specializing in materials and condensed matter must complete 615.480 Materials Science plus three of the first six courses listed below.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>615.441</td>
<td>Mathematical Methods for Physics and Engineering</td>
</tr>
<tr>
<td>615.442</td>
<td>Electromagnetics</td>
</tr>
<tr>
<td>615.451</td>
<td>Statistical Mechanics and Thermodynamics</td>
</tr>
<tr>
<td>615.453</td>
<td>Classical Mechanics</td>
</tr>
<tr>
<td>615.454</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>615.465</td>
<td>Modern Physics</td>
</tr>
<tr>
<td>615.480</td>
<td>Materials Science</td>
</tr>
</tbody>
</table>

Additional six courses
Of the remaining six courses, four or more must be from the courses listed below selected from the Applied Physics, Electrical and Computer Engineering, Materials Science and Engineering, and Chemical and Biomolecular Engineering curricula.

Applied Physics
- 615.460 Sensors and Sensor Systems for Homeland Security
- 615.481 Polymeric Materials
- 615.746 Nanoelectronics: Physics and Devices
- 615.747 Sensors and Sensor Systems
- 615.757 Solid State Physics
- 615.760 Physics of Semiconductor Devices
- 615.768 Superlattices and Heterostructure Devices

Note: 615.800 Applied Physics Project and 615.802 Directed Studies in Applied Physics also can be used to pursue specialized interests in materials and condensed matter.

Electrical and Computer Engineering
- 525.406 Electronic Materials
- 525.421 Introduction to Electronics and the Solid State I

Materials Science and Engineering
- 510.420 Topics in Biomaterials
- 510.604 Mechanical Properties of Materials
- 510.606 Chemical and Biological Properties of Materials
- 510.622 Micro-and Nano-Structured Materials and Devices
- 510.422 Micro-and Nano-Structured Materials and Devices
- 515.417 Nanomaterials

Chemical and Biomolecular Engineering
- 540.427 Introduction to Polymer Science
- 540.439 Polymer Nanocomposites
Mechanical Engineering

Mechanical engineering is the broadest of the engineering disciplines for it lies at the core of engineering design and engineering practice. Engineering is changing rapidly because of the coupling of globalization with advances in information technology, biomedicine, and nanotechnology—and mechanical engineering is the discipline that is leading this change. From the design of medical prostheses to the cooling of advanced computers, and from robot vision to computer-integrated manufacturing, the scope of mechanical engineering is growing at an accelerating pace. The Mechanical Engineering program at Johns Hopkins seeks to develop engineering professionals who can both strengthen the core of the discipline and who can lead the profession in a time of rapid change.

The Master of Mechanical Engineering program is designed for practicing engineers who wish to prepare for and enhance their effectiveness in a complex and rapidly evolving technological and organizational environment. The program is designed not only to broaden and strengthen students’ understanding of the traditional fundamentals but also to introduce them to contemporary applications and technologies.

Courses are offered in three basic concentrations: mechanics (either solid mechanics or thermo-fluid mechanics), manufacturing, and robotics and controls. The program has sufficient flexibility to allow students to develop some multidisciplinary strength outside of a concentration. In any case, students are expected to coordinate their selection of courses under the guidance of a faculty advisor.

The degree is awarded on the basis of course work only. No thesis is required. Course offerings are typically structured in two-year cycles.

Program Committee

K. T. Ramesh, Program Chair
Professor of Mechanical Engineering
Whiting School of Engineering

Andrea Prosperetti
Charles A. Miller Jr. Distinguished Professor of Mechanical Engineering
Whiting School of Engineering

Louis Whitcomb
Professor of Mechanical Engineering
Whiting School of Engineering

Admission Requirements

Applicants must meet the general requirements for admission to graduate study outlined in this catalog (see Admission Requirements). Each applicant should hold a bachelor’s degree in mechanical engineering or a related field. Prospective students who do not meet these criteria should direct admission inquiries to the program committee. All admissions decisions are made on an individual basis by the program committee.

Course Requirements

The program offers three concentrations: mechanics (either solids or thermo-fluids), manufacturing, and robotics and controls. The following requirements are common to all concentrations. Additional requirements are listed with the course listings for each concentration.

Ten one-term courses, numbered 400-level or above, must be completed within a maximum of five years. One of these courses must be an advanced mathematics course, such as 535.441 Mathematical Methods for Engineers. In addition, at least one computationally oriented course is strongly recommended but not required.

Each concentration has two required courses, and a total of five courses must be chosen from within one concentration. Adding the required mathematics course accounts for six of the 10 required courses. The remaining four courses can be selected from the graduate offerings of any of the full- or part-time engineering programs of the Whiting School of Engineering (including Technical Management). In particular, students concentrating in one area in mechanical engineering can take courses offered under any of the other concentrations.

All required courses within a given concentration will typically be available at least once a year. All course selections, or course changes, must be approved by the student’s advisor. A thesis is not required, nor is knowledge of a foreign language.

Required Advanced Mathematics Course

This advanced mathematics course must be taken in the first semester of the student’s program, unless the advisor explicitly allows the student to do otherwise.

535.441 Mathematical Methods for Engineers

Suggested Computationally Oriented Courses

A variety of computationally oriented courses are available with varying expectations in terms of mathematical background and programming skill. These include:

535.410 Computational Methods of Analysis
535.431 Introduction to Finite Element Methods
535.432 Applied Finite Elements
535.409 Topics in Data Analysis
560.730 Finite Element Methods (offered by Civil Engineering, cannot be counted with 535.431)

Concentrations

I. Mechanics

Within the mechanics concentration, students may choose either a solid mechanics track or a thermo-fluid mechanics track. Students taking the solid mechanics track must take 535.406 Advanced Strength of Materials and 535.423 Intermediate Vibrations. Students taking the thermo-fluid mechanics track must take 535.421 Intermediate Fluid Dynamics and 535.433 Intermediate Heat Transfer. Three additional courses...
Solid Mechanics Track

- 535.406 Advanced Strength of Materials*
- 535.411 Friction and Wear
- 535.412 Intermediate Dynamics
- 535.423 Intermediate Vibrations*
- 535.427 Computer-Aided Design
- 535.431 Introduction to Finite Element Methods
 cannot be counted together with 560.730
- 535.432 Applied Finite Elements
- 535.454 Theory and Applications of Structural Analysis
- 535.625 Advanced CAD Modeling, Analysis, and Manufacturing
- 535.720 Analysis and Design of Composite Structures
- 535.731 Engineering Materials Selection and Testing
- 560.730 Finite Element Methods
 cannot be counted together with 535.431
- 585.609 Cell Mechanics
- 585.618 Biological Fluid and Solid Mechanics
- 585.620 Orthopedic Biomechanics

*Required courses

Note: 535.411 and 535.620 are only occasionally offered.

Thermo-Fluid Mechanics Track

- 535.414 Fundamentals of Acoustics
- 535.421 Intermediate Fluid Dynamics*
- 535.424 Energy Engineering
- 535.433 Intermediate Heat Transfer*
- 535.434 Applied Heat Transfer
- 535.443 Computational Heat Transfer
- 535.450 Combustion
- 535.452 Thermal Systems Design and Analysis
- 535.453 Fundamentals of Applied Thermal Systems
- 535.461 Energy and the Environment
- 535.636 Applied Computational Fluid Mechanics
- 535.712 Applied Fluid Dynamics
- 585.609 Cell Mechanics
- 585.618 Biological Fluid and Solid Mechanics

*Required courses

Note: 535.453 and 535.636 are only occasionally offered.

II. Manufacturing

- 535.423 Intermediate Vibrations
- 535.426 Kinematics and Dynamics of Robots
- 535.427 Computer-Aided Design
- 535.428 Computer-Integrated Design and Manufacturing*
- 535.433 Intermediate Heat Transfer
- 535.442 Control Systems for Mechanical Engineering Applications
- 535.458 Design for Manufacturability
- 535.459 Manufacturing Systems Analysis*
- 535.472 Advanced Manufacturing Systems
- 535.474 Quality Assurance Engineering
- 535.625 Advanced CAD Modeling, Analysis, and Manufacturing
- 595.460 Introduction to Project Management
- 595.760 Introduction to Quality Management

*Required courses

Note: 595.474 is only occasionally offered.

III. Robotics and Controls

- 525.409 Continuous Control Systems
- 525.763 Applied Nonlinear Systems
- 530.651 Haptic Systems for Teleoperation and Virtual Reality
- 535.412 Intermediate Dynamics
- 535.422 Robot Motion Planning
- 535.423 Intermediate Vibrations
- 535.425 Computer Vision
- 535.426 Kinematics and Dynamics of Robots*
- 535.427 Computer-Aided Design
- 535.428 Computer-Integrated Design and Manufacturing
- 535.442 Control Systems for Mechanical Engineering Applications*
- 535.445 Digital Control and Systems Applications
- 535.459 Manufacturing Systems Analysis
- 535.625 Advanced CAD Modeling, Analysis, and Manufacturing
- 535.726 Robot Control

*Required courses

Note: 535.435 and 535.726 are only occasionally offered.
Course Descriptions

The courses listed with the prefix 535 are offered one night per week. Courses with the prefix 530 are usually offered during the day as part of the full-time graduate program in mechanical engineering.

All courses have as minimum prerequisites the following: undergraduate engineering courses in differential equations, statics, dynamics, thermodynamics, and strength of materials. In addition, the specific prerequisites for each course must be fulfilled.

Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.

530.651 Haptic Systems for Teleoperation and Virtual Reality

This course provides a graduate-level introduction to the field of haptics, focusing on teleoperated and virtual environments that are displayed through the sense of touch. Topics covered include human haptic sensing and control, design of haptic interfaces (tactile and force), haptics for teleoperation, haptic rendering and modeling of virtual environments, control and stability issues, and medical applications such as tele-surgery and surgical simulation. Course work includes homework, programming assignments, reading, and discussion of research papers, presentations, and a final project. This course is appropriate for students in any engineering discipline with interests in robotics, virtual reality, or computer-integrated surgical systems. Undergraduates admitted with consent of the instructor. (Cross-listed as 600.651)

Hemker

530.652 Bridging Length Scales in Materials Behavior

This course addresses the tools needed to bridge the macroscopic, continuum, mesoscopic, microscopic, and atomic length scales that currently bound the physical theories and models that have been developed to describe materials behavior.

Hemker

530.753 Fatigue

Topics covered by this course include high-cycle and low-cycle fatigue, constant amplitude and spectrum loading, and phenomenological relations, with special emphasis on notches and on short cracks. Offered only occasionally.

535.406 Advanced Strength of Materials

This is a practical course in advanced strength of materials that uses design techniques to solve complex problems. It focuses on newly developed experimental techniques that allow simplification of previously unsolvable problems to something that can be quickly "estimated." It concentrates on stresses in torsion, shear and bending, stress concentration effects, stability, fatigue, fracture mechanics, general design criteria, cantilever beams with different boundary conditions, variable section cantilever beams, beams with different constraints, curved bars and hooks, plates and flanges, panels and closures, flanges and brackets, weld analysis, pressure vessels (thick and thin), and combined axial and bending response of beams and cylinders.

Roberts

535.409 Topics in Data Analysis

This course will provide a survey of standard techniques for the extraction of information from data generated experimentally and computationally. The approach will emphasize the theoretical foundation for each topic followed by applications of each technique to sample experimental data. The student will be provided with implementations to gain experience with each tool to allow the student to then quickly adapt to other implementations found in common data analysis packages. Topics include uncertainty analysis, data fitting, feed-forward neural networks, probability density functions, correlation functions, Fourier analysis and FFT procedures, spectral analysis, digital filtering, and Hilbert transforms. Projects will require some programming experience or familiarity with tools such as MATLAB.

Hess

535.410 Computational Methods of Analysis

This course serves as an introduction to using MATLAB for typical engineering analyses and may serve as a valuable precursor to the more computationally intensive courses in the program that use MATLAB. Course topics include an introduction to script programming, solution of one- and two-dimensional definite integrals, solution of coupled sets of ordinary differential equations, typical data analysis (e.g., Fourier transforms, curve fitting, and signal processing), and matrix manipulation (e.g., solution of linear systems and eigenvalue extraction).

Lamb

535.411 Friction and Wear

This course provides basic concepts for understanding contact, friction, and wear. An introduction to different forms of friction and wear and to the necessary elements of continuum mechanics is followed by an examination of pressure and stress distributions and the interaction of rough surfaces. Frictional effects, including fretting, microslip, and rolling-sliding contact, are also discussed. Students examine the mechanics of lubrication, including hydrodynamic and elastohydrodynamic lubrication, film thickness effects, and the friction inside a lubricant layer. The course concludes with industrial applications, including the design of ball and roller bearings, the selection of lubricants for bearings and gears, and the design of antifriction and wear-resistant coatings. Offered only occasionally.

Prerequisite: An undergraduate course in strength of materials.
535.412 Intermediate Dynamics
This course covers kinematics and dynamics of systems of particles and rigid bodies undergoing planar and general 3-D motion. Applications of the conservation equations are reviewed in the context of mass-flow and impact. Vectoral and analytical mechanics approaches are introduced and used to analyze the dynamics of systems of interconnected rigid bodies. MATLAB is used as a computational and plotting tool throughout the course. The course provides a balance between the underlying theory and real-world problem solving.

Prerequisite: An undergraduate dynamics course.

Lamb

535.414 Fundamentals of Acoustics
An introduction to the physical principles of acoustics and their application. Fundamental topics include the generation, transmission, and reception of acoustic waves. Applications covered are selected from underwater acoustics, architectural acoustics, remote sensing, and nondestructive testing.

Prerequisites: Some familiarity with linear algebra, complex variables, and differential equations.

Burkhardt

535.421 Intermediate Fluid Dynamics
This course prepares the student to solve practical engineering flow problems and concentrates on the kinematics and dynamics of viscous fluid flows. Topics include the control volume and differential formulations of the conservation laws, including the Navier-Stokes equations. Students examine vorticity and circulation, dynamic similarity, and laminar and turbulent flows. The student is exposed to analytical techniques and experimental methods, and the course includes an introduction to computational methods in fluid dynamics. It also includes a programming project to develop a numerical solution to a practical fluid flow problem.

Prerequisites: An undergraduate fluid mechanics course.

Hess

535.422 Robot Motion Planning
This course investigates the motion planning problem in robotics. Topics include motion of rigid objects by the configuration space and retraction approaches, shortest path motion, motion of linked robot arms, compliant motion, coordinated motion of several objects, robust motion with error detection and recovery, and motion in an unknown environment.

Urban

535.423 Intermediate Vibrations
Course topics include transient and forced vibration of one- and N-degree of freedom systems and an introduction to vibration of continuous systems. Hamilton’s principle and Lagrange’s equations are used throughout the course to derive the equation(s) of motion. MATLAB is introduced and used to solve the equations of motion and plot the response of the system. This course also addresses common topics in applied vibrations such as the environmental testing, the shock response spectrum, random vibration, vibration isolation, and the design of tuned-mass damper systems.

Prerequisite: An undergraduate vibrations course.

Lamb

535.424 Energy Engineering
The course will focus on an analytical system performance technique known as availability of exergy analysis, which is based on the second law of thermodynamics. It is applicable to all types of thermodynamic systems, but since the text focuses on traditional power and refrigeration systems, so will the course. However, nontraditional power generation systems will be considered by way of a special project of each student’s choice. It will include an engineering description of the state of the art of the selected topic (e.g., wind or solar power, fuel cell, etc.), and a second law performance analysis of a prototype system will be presented to the class. In addition to the power system topics, the availability analysis will be applied to the combustion and psychrometric processes. Lectures will follow the textbook, and the student will be responsible for a selected number of text problems, upon which the test(s) will be literally based.

535.426 Kinematics and Dynamics of Robots
This course introduces the basic concepts and tools used to analyze the kinematics and dynamics of robot manipulators. Topics include kinematic representations and transformations, positional and differential kinematics, singularity and workspace analysis, inverse and forward dynamics techniques, and trajectory planning and control.

Armand

535.427 Computer-Aided Design
This course explores many aspects of the mechanical design and development process using computer-aided design (CAD). Solid modeling, assembly modeling, detail drafting, mechanism dynamics, and structural analysis are all explored using Pro/ENGINEER.

Boyle

535.428 Computer-Integrated Design and Manufacturing
This course emphasizes the computer automation of design and manufacturing systems. A survey of the automation techniques used in modern design and manufacturing facilities is presented. Discussions are presented related to the system integration of computer-aided design (CAD), computer-aided engineering (CAE), computer-aided manufacturing (CAM), robotics, material resource planning, tool management, information management, process control, and quality control. The current capabilities, applications, limitations, trends, and economic considerations are stressed.

Ivester
535.431 Introduction to Finite Element Methods
Topics covered by this course include theory and implementation of finite element models for typical linear problems in continuum mechanics, including fluid flow, heat transfer, and solid mechanics. Emphasis will be placed upon developing a fundamental understanding of the method and its application.

Lear

535.432 Applied Finite Elements
This course provides an introduction to the study of mechanics using the finite element method. Topics include the stiffness method, stationary principles, the Rayleigh-Ritz method, displacement-based elements, isoparametric formulation, and coordinate transformation. A general purpose finite element analysis package will be used for computer project assignments. Students who successfully complete this course will be able to utilize general purpose commercial code to solve linear two- and three-dimensional problems in statics and vibrations.

Oguz

535.433 Intermediate Heat Transfer
This course covers the following topics: transient heat conduction, forced and free convection in external and internal flows, and radiation processes and properties.

Prerequisite: An undergraduate heat transfer course.

Hassan

535.434 Applied Heat Transfer
This course focuses on the inevitable trade-offs associated with any thermodynamic or heat transfer system, which result in a clear distinction between workable and optimal systems. The point is illustrated by means of a number of concrete problems arising in power and refrigeration systems, electronics cooling, distillations columns, heat exchange, and co-generation systems.

Prerequisite: An undergraduate heat transfer course.

Didion

535.441 Mathematical Methods for Engineers
This course covers a broad spectrum of mathematical techniques needed to solve advanced problems in engineering. Topics include ordinary differential equations, complex variables, integral transforms, vectors and matrices, special functions, and partial differential equations. Application of these topics to the solutions of physics and engineering problems is stressed.

Prerequisites: Vector analysis and ordinary differential equations. This course may be substituted for 615.441 Mathematical Methods for Physics and Engineering in the Applied Physics program.

Nakos

535.442 Control Systems for Mechanical Engineering Applications
This course presents an overview of the current control elements and processes for mechanical and electromechanical systems used in standard engineering practice. Various systems, including thermal and fluid models, are described with particular emphasis placed on computer control applications. Analysis is performed on commonly used servomechanisms, and design and stability criteria are investigated.

535.445 Digital Control and Systems Applications
This class will provide a comprehensive treatment of the analysis and design of discrete-time control systems. The course will build upon the student's knowledge of classical control theory and extend that knowledge to the discrete-time domain. This course is highly relevant to aspiring control systems and robotics engineers since most control system designs are implemented in micro-processors (hence the discrete-time domain) via analog circuitry. Additionally, the course will go into advanced control system designs in the state-space domain and will include discussions of modern control design techniques including linear-quadratic optimal control design, pole-placement design, and state-space observer design. The class will use a series of applications that build in complexity throughout the semester to emphasize and reinforce the material.

Prerequisite: 535.442 Control Systems for Mechanical Engineering Applications.

Urban

535.450 Combustion
This is a multidisciplinary course involving applications of thermodynamics, fluid mechanics, heat transfer, and chemistry. Course contents include a review of chemical thermodynamics, chemical kinetics, transport theory, and conservation equations; laminar flow in premixed and non-premixed gases; combustion waves; ignition; combustion aerodynamics; multiphase combustion; and turbulent combustion. Selected applications are discussed including gas turbines, spark ignition and diesel engines, jet engines, industrial furnaces, pollutant formation, and control in combustion.

Staff

535.452 Thermal Systems Design and Analysis
Thermodynamics and heat transfer principles are applied to power and refrigeration systems with emphasis on economic and performance trade-offs. Where it has practical value, the use of second law analysis (i.e., an entropy inventory) is introduced. The mathematical modeling of thermal elements and complex systems is developed to minimize primary energy consumption while meeting variable load patterns. This leads to the use of an advanced PC-based equation solver software package for simulation and numerical solution. The necessary software is provided to the students.

Prerequisites: Undergraduate courses in thermodynamics and heat transfer. No computer programming is required.

Healy
535.454 Theory and Applications of Structural Analysis

Course topics include classical shell structures; twisting and bending of single cell open section structures, twisting and bending of closed section structures, pure twisting of multi-celled structures, bending of multi-celled structures, classical plate theory, applications of bending and buckling of plates in multi-celled structures, and finite element analysis of structures.

Ivester

535.458 Design for Manufacturability

The key principles for designing a quality, cost-efficient product are related to competitiveness in manufacturing environments in this course. Topics include design for manufacturing, design for assembly, process selection, inspection planning, concurrent engineering, product re-engineering, quality management, and agile manufacturing. The focus is on engineering designs and system approaches that affect cost, quality, cycle time, and maintainability.

Ivester

535.459 Manufacturing Systems Analysis

This course is a review of the fundamentals of modern manufacturing processes, computer-aided design/manufacturing tools, flexible manufacturing systems, and robots. The course addresses relationships between process machinery, process conditions, and material properties. Examples of high-tech industries illustrate how mechanical and electronic components are manufactured from metals, polymers, ceramics, composites, and silicon.

Ivester

535.461 Energy and the Environment

The course focuses on advanced topics related to energy and thermodynamics. The objective of this course is to provide a thorough understanding of the environmental impacts related to energy conversion systems. The use of the second law of thermodynamics is introduced to quantify the performance of energy conversion systems. Topics such as global warming, alternative energy sources (solar, wind power, geothermal, tides, etc.) new technologies (fuel cells and hydrogen economy), and resources and sustainable development are addressed. A section of the course is devoted to current trends in nuclear energy generation and environmental issues associated with it.

Prerequisite: Undergraduate course in thermodynamics or physics course covering thermodynamics topics.

535.472 Advanced Manufacturing Systems

This course examines the effect that new technology, engineering, and business strategies have on transforming U.S. industry into a world-class, competitive force. An emphasis is placed on the state of the art of factory automation and computer-integrated manufacturing. Topics include advanced manufacturing processes, rapid prototyping, intelligent manufacturing controls, and information technology in manufacturing. Technical principles related to advanced manufacturing are presented. Examples of actual production systems (including video presentations and plant visits) illustrate how industry is adopting the latest technology to meet customer requirements for quality, low cost, and flexibility.

Ivester

535.474 Quality Assurance Engineering

This course addresses quality management principles and leadership topics that are suitable for applications in various engineering disciplines. Course discussions include the latest in quality and productivity improvement tools and techniques, ways to incorporate quality technology in design, leadership requirements in organizations to manage change and innovation, the changing roles of leadership, and development of leadership for the global competitive marketplace. Students discuss implementation of quality management tools and systems, including benchmarking, process control, concurrent engineering, Taguchi methods, supplier quality management (SQM), implementation of six sigma, lean manufacturing methodology, and quality systems auditing. Current applications and strategies are introduced such as Deming’s P-D-S-A cycle, Kaizen continual improvement process, strategic planning, total employee participation, business process re-engineering, and the views of global quality “leaders.” The course covers and discusses the Malcolm Baldrige Award criteria and provides a comprehensive practical understanding of the ISO 9000 International standards.

Ali

535.481 Commercial Nuclear Reactors

This is an introductory course to commercial nuclear power plant operation from a heat transfer and thermal-hydraulics perspective. You will gain a working knowledge of criticality theory and reactivity management, the two basic domestic light water reactor designs (pressurized water reactors and boiling water reactors), and the practical problems resulting from large scale one- and two-phase flow heat transfer. While the course will involve some problem solving, the main thrust is to provide a conceptual understanding of the design and theory of operation of light water reactor fluid systems.

Merschoff

535.620 Orthopedic Biomechanics

This course is an introduction to the field of orthopedic biomechanics for the engineer. It will cover the structure and function of the musculoskeletal system, including detailed discussions on the material properties of bone, ligament, tendon, cartilage, and muscle. Other topics of discussion will include viscoelasticity, bone remodeling, and injury mechanisms. Journal articles from the biomechanics literature will be used to explore current areas of active research.

Prerequisite: Statics required and dynamics recommended.
535.625 Advanced CAD Modeling, Analysis, and Manufacturing
This course presents advanced mechanical design techniques using the Pro/ENGINEER (PTC, Inc.) CAD/CAM software. It explains advanced methods and techniques about assembly and mechanism design, kinematic and dynamic analyses, structural analyses (FEA), and CNC manufacturing. The material is presented based on extensive hands-on examples. The CAM sections includes practical examples with 3-5 axes Vertical Machining Centers (HAAS FV-1&2) and a Turning CNC center (HAAS SL-20).
Prerequisite: Knowledge and experience with basic ProE parts and assembly management.

Stoianovici

535.626 Advanced Machine Design
This course provides a broad treatment of stress, strain, and strength with reference to engineering design and analysis. Major emphasis is placed on the analytical and experimental methods of determination of stresses in relationship to the strength properties of machine elements under various loading conditions. Also considered are deflection, post-yield behavior, residual stresses, thermal stresses, creep, and extreme temperature effects as applied to the design of fasteners, shafts, power trains, and rotational machinery.

Dehghani

535.636 Applied Computational Fluid Mechanics
This course explores engineering applications of computational fluid dynamics with background information on the most common numerical methods: two-dimensional inviscid and viscous flows, boundary layer flows, and an introduction to three-dimensional flows. Applications are illustrated utilizing commercially available codes.
Prerequisites: 535.421 Intermediate Fluid Dynamics and 535.441 Mathematical Methods for Engineers. Students should have a least one basic course in fluid dynamics, one course in ordinary differential equations, and some familiarity with partial differential equations. Some programming experience is also assumed.

Janajreh

535.712 Applied Fluid Dynamics
This course will provide a survey of topics in applied fluid dynamics for the practicing engineer. The first topic will concentrate on pipe and duct flow, looking at friction factors, abrupt changes in area, and pipe systems. This is followed by unsteady flows focusing on pressure transients, such as water hammer. A section on lubrication theory covering wedge and journal bearings is presented. Open channel flows are discussed with emphasis on optimum cross-sectional shape and specific energy. Turbomachinery such as axial and centrifugal pumps, including specific speed and suction limitations, is described. Fluid dynamic drag and lift from streamlined surfaces are presented, including topics such as vortex shedding, terminal velocity, and cavitation. The approach will emphasize the practical foundation needed to solve real-world problems. Projects will require some programming experience or familiarity with tools such as MATLAB.
Prerequisite: 535.421 Intermediate Fluid Dynamics.

Hess

535.720 Analysis and Design of Composite Structures
Topics in this course include anisotropic elasticity, laminate analysis, strength of laminates, failure theories, bending, buckling, and vibration of composite plates. The second part of the course is devoted to the applications of the structural analysis of composite structures by means of finite-elements computer codes.

Roberts

535.726 Robot Control
This course focuses on the theory and methods used for the control of robotic manipulators. Topics include review of basic systems theory, robot position control, model-based trajectory tracking, and force control. Stability properties for each control strategy will be analyzed. Practical implementation issues will also be addressed. Students will simulate different control methods using MATLAB.
Prerequisites: 535.426 Kinematics and Dynamics of Robots, Ordinary Differential Equations, Linear Algebra.

Armand

535.731 Engineering Materials Selection and Testing
Become familiar with different classes of engineering materials and their trade-offs associated with design criteria such as strength, toughness, corrosion-resistance, and fabricability, as well as common test methods for evaluating material properties. This course will concentrate on metal alloys but will also consider polymers, ceramics, and composites. Topics specific to metals will include effects of work hardening and heat treatment, fatigue, stress-corrosion cracking, and elevated temperature properties. Topics specific to polymers will include viscoelasticity, stress relaxation and creep, and phase transitions. Topics specific to ceramics will include flaw-dominated strength, fracture energy, and statistical determination of strength. Topics specific to composites will include resin and reinforcement systems and fabrication techniques.

Lennon
Nanotechnology Option

Nanotechnology involves science and engineering on the nanometer scale (generally less than or on the order of 100nm). It concerns the design, synthesis, and processing of nanoscale structures for engineering applications. In some cases this can involve the assembly of materials one molecule or even one atom at a time. At these small length scales, materials often display novel behavior that can be exploited technologically. For example, in the area of nanoelectronics, there has been an intense effort toward continued miniaturization of semiconductor devices in order to increase the density of transistors in integrated circuits or to exploit quantum mechanical effects that occur only when the length scale is reduced to the nanoscale range. Nanomaterials also display enhanced mechanical, optical, magnetic, and chemical properties that offer a wide variety of technological uses. Recently nanotechnology has become extremely important in the area of biotechnology, allowing for the study of the science and engineering of biological materials for a variety of medical applications.

Admission Requirements
Applicants must meet the requirements for admission into the Master of Materials Science and Engineering (M.M.S.E.) program. The program is best suited for students who have received undergraduate degrees in engineering or science. Applicants are expected to have completed a mathematics sequence through differential equations and courses in general physics and chemistry. Applicants must also meet the general requirements for study outlined in this catalog. The program committee is willing to consider applicants who do not meet the general admission requirements in exceptional cases.

Nanotechnology Course Requirements
Students enrolled in the Master of Science in Materials Science and Engineering program can elect to pursue the Nanotechnology Option. Two concentrations are offered: the nanomaterials concentration and the biotechnology concentration. For either concentration, the student must successfully complete the core courses and then at least three courses selected from the corresponding concentration course list. The student, in consultation with the departmental coordinator, will select the other courses (for a total of 10) from the part-time or full-time graduate courses offered by the Whiting School of Engineering. The set of 10 courses must represent a coherent educational program and be approved by the departmental coordinator. At least one of the non-core courses must be 600-level or higher.

Required Core Courses
All students are required to take 515.401 Structure and Properties of Materials, 515.402 Thermodynamics and Kinetics of Materials, 515.416 Introduction to Nanotechnology, and 515.417 Nanomaterials. The program of 10 courses that the student plans to pursue must be approved by the departmental coordinator.

A list of acceptable electives for the nanomaterials and biotechnology concentrations are given below. Students who wish to take courses not listed below need to get prior approval from the departmental coordinator.

I. Nanomaterials Concentration

Materials Science and Engineering Courses
- 510.611-612 Solid State Physics
- 510.622 Micro-and Nano-Structured Materials and Devices
- 515.730-731 Materials Science and Engineering Project

Applied Biomedical Engineering Courses
- 580.637 Cellular and Tissue Engineering
- 585.405-406 Physiology for Applied Biomedical Engineering
- 585.409 Mathematical Methods for Applied Biomedical Engineering
- 585.608 Biomaterials
- 585.609 Cell Mechanics
- 585.610 Biochemical Sensors
- 585.614 Applications of Physics and Technology to Biomedicine
- 585.618 Biological Fluid and Solid Mechanics
- 585.626 Biomimetics in Biomedical Engineering

Chemical and Biomolecular Engineering Courses
- 540.439 Polymer Nanocomposites
- 540.612 Interfacial Phenomena in Nanotechnology

Electrical and Computer Engineering Courses
- 525.406 Electronic Materials
- 525.421 Introduction to Electronics and the Solid State I

Mechanical Engineering Courses
- 530.487 Introduction to Microelectromechanical Systems (MEMS)
- 530.652 Bridging Length Scales in Materials Behavior
II. Biotechnology Concentration

Materials Science and Engineering Courses
- 510.606 Chemical and Biological Properties of Materials
- 510.617 Advanced Topics in Biomaterials
- 515.730-731 Materials Science and Engineering Project

Applied Biomedical Engineering Courses
- 580.637 Cellular and Tissue Engineering
- 585.405-406 Physiology for Applied Biomedical Engineering
- 585.409 Mathematical Methods for Applied Biomedical Engineering

585.608 Biomaterials
585.609 Cell Mechanics
585.610 Biochemical Sensors
585.614 Applications of Physics and Technology to Biomedicine
585.618 Biological Fluid and Solid Mechanics
585.626 Biomimetics in Biomedical Engineering

Chemical and Biomolecular Engineering Courses
- 540.612 Interfacial Phenomena in Nanotechnology
Photonics Option

Photonics, a technical area crossing the boundaries of physics and electrical engineering, continues to be of considerable importance in our technical activities. Although there is no separate degree curriculum in photonics, students can elect to pursue a concentration in photonics from either the applied physics or electrical and computer engineering curricula. To do this, students can complete a combination of courses selected from both the Applied Physics and Electrical and Computer Engineering curricula. The wide variety of courses from both areas allows students, working with advisors, to structure a program meeting their professional development needs.

Admission Requirements
Applicants must meet the general requirements for admission to graduate programs outlined in this catalog. In addition, applicants must meet the specific program requirements for either Applied Physics or Electrical and Computer Engineering. The special option in photonics will be noted on the student’s transcript.

Course Requirements
A total of 10 one-term courses must be completed.

Applied Physics required core for Photonics Option:
Applied Physics students specializing in photonics must complete the following three Applied Physics courses plus one additional course from the required Electrical and Computer Engineering list.

615.441 Mathematical Methods for Physics and Engineering
615.454 Quantum Mechanics
615.471 Principles of Optics

The six additional courses must include four or more photonics courses selected from both the Applied Physics and the Electrical and Computer Engineering curricula.

Electrical and Computer Engineering required core for Photonics Option:
Electrical and computer engineering students specializing in photonics must complete the following three Electrical and Computer Engineering courses plus one additional course from the required Applied Physics list.

525.413 Fourier Techniques in Optics
525.425 Laser Fundamentals
525.491 Fundamentals of Photonics

The three additional courses must be selected from the lists below. The three additional courses needed to complete the degree may be any courses approved by the advisor, selected so as to fulfill the general requirements for the M.S. degree.

Applied Physics courses:
615.751 Modern Optics
615.758 Modern Topics in Applied Optics
615.778 Computer Optical Design
615.780 Optical Detectors and Applications
615.781 Quantum Information Processing
615.782 Optics and MATLAB

Note: 615.800 Applied Physics Project and 615.802 Directed Studies can also be used to allow the student to pursue specialized interests in photonics.

Electrical and Computer Engineering courses:
525.413 Fourier Techniques in Optics
525.425 Laser Fundamentals
525.436 Optics and Photonics Laboratory
525.491 Fundamentals of Photonics
525.753 Laser Systems and Applications
525.756 Optical Propagation, Sensing, and Backgrounds
525.772 Fiber-Optic Communication Systems
525.792 Electro-Optical Systems
525.796 Introduction to High-Speed Electronics and Optoelectronics
525.797 Advanced Optics and Photonics Laboratory

Note: 525.801 and 525.802 Special Project courses can also be used to allow students to pursue specialized interests in optics.

Applied Biomedical Engineering course:
585.634 Biophotonics

Course Descriptions
Courses numbered 600-level and above are open only to students who have been admitted for graduate study. Some courses may not be offered every year. Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.
Systems Engineering

Systems engineering is that part of the technical management process that coordinates and oversees the translation of an operational need into a system designed to meet that need. It integrates the inputs of all the required technical disciplines into a coordinated effort that meets established performance, cost, and schedule goals. Systems engineers provide the leadership and coordination of the planning, development, and engineering of technical systems, including hardware and software components. Systems engineering currently enjoys growing importance and recognition as a distinct discipline, widely sought by both industry and government.

The Master of Science in Systems Engineering program is designed to address the specific needs of engineers and scientists engaged in all aspects of analysis, design, integration, production, and operation of modern systems. Since systems engineering is essentially an experience-based rather than a knowledge-based subject, the program makes use of practicing professional systems engineers as instructors. The methodology employs a combination of lectures and readings on theory and practice, together with realistic problem situations in which students, either individually or as members of small teams, learn to apply the principles, tools, and skills they learn. The educational objective is to provide students with both theoretical and practical knowledge, skills, and tools; a systematic approach to problem solving; and the confidence to solve complex system problems.

Students are encouraged to pursue the entire master’s degree, but in special approved cases may apply for the Graduate Certificate in Systems Engineering. The requirements for admission are the same as for the master’s degree and the student must complete six courses, as approved by the program chair/vice chair, with a grade of A or B (see Admission Requirements).

Program Committee

Ronald R. Luman, Chair
Principal Professional Staff
Applied Physics Laboratory

Samuel J. Seymour, Vice Chair
Principal Professional Staff
Applied Physics Laboratory

Steven M. Biemer
Principal Professional Staff
Applied Physics Laboratory

William B. Crownover
Principal Professional Staff
Applied Physics Laboratory

Conrad J. Grant
Principal Professional Staff
Applied Physics Laboratory

Benjamin F. Hobbs
Theodore M. and Kay W. Schad
Professor of Environmental Management
Whiting School of Engineering

Jerry A. Krill
Principal Professional Staff
Applied Physics Laboratory

Edward A. Smyth
Principal Professional Staff
Applied Physics Laboratory

Larry D. Strauser
Principal Professional Staff
Applied Physics Laboratory

Charles R. Westgate
Professor Emeritus
Electrical and Computer Engineering
Whiting School of Engineering

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program outlined in this catalog (see Admission Requirements under General Information). In addition, the applicant should have a degree in a technical field and have a minimum of one year of appropriate full-time work experience in that field. A resume must be submitted with the application form.

Course Requirements

Prior or concurrent completion of 645.467 Management of Systems Projects and 645.462 Introduction to Systems Engineering (taken in either order) is generally a prerequisite to more advanced courses in the systems engineering curriculum. Specific prerequisites for each course are shown under the individual course descriptions. An approved program plan is required for preferential placement in registering.

Neither a thesis nor knowledge of a foreign language is required in this program. Academic standards governing graduate study, as specified in this catalog, must be maintained. All students must satisfactorily complete 10 one-semester courses as follows:

Six core courses:

- 645.462 Introduction to Systems Engineering
- 645.467 Management of Systems Projects
- 645.764 Software Systems Engineering
- 645.767 System Conceptual Design
- 645.768 System Design and Integration
- 645.769 System Test and Evaluation

One of the following four advanced courses:

These courses form the core of the Advanced Certificate for Post-Master’s Study in Systems Engineering.

- 645.742 Management of Complex Systems
- 645.753 Enterprise Systems Engineering
- 645.761 Systems Architecting
- 645.771 System of Systems Engineering
Students must complete either the one-semester systems engineering master's project or the two-semester systems engineering master's thesis. The thesis option is strongly recommended for students planning to pursue doctoral studies. In addition, students must complete one or two relevant electives, depending on whether the student has selected the master's project or the master's thesis option, respectively.

645.800 Systems Engineering Master's Project
645.801-802 Systems Engineering Master's Thesis

Electives
Electives may be selected from the Technical Management, Applied Biomedical Engineering, Applied Physics, Computer Science, Electrical Engineering, Environmental Engineering and Science, and Information Systems Engineering programs. Individual courses (595 series) are described in the current catalog under the Technical Management program section. Systems Engineering students may not take 595.460 Introduction to Project Management nor 595.464 Project Planning and Control as elective courses. There are two additional systems engineering courses that may serve as electives:

645.469 Systems Engineering of Deployed Systems
645.756 Metrics, Modeling, and Simulation for Systems Engineering

Systems Engineering Concentration Online
The Systems Engineering master's degree can be completed online with course content identical to that in the classrooms but available in a paced, asynchronous mode over the Internet. Taped lectures are augmented with internet discussions and weekly live office hours. Prospective students should consult the EP website for course schedules and procedures for online programs. The online courses are available only in the Systems Engineering concentration.

Systems Engineering Concentration Areas
Students pursuing the M.S. in Systems Engineering may elect to concentrate their studies in one of several concentration areas listed below.

Project Management
Admission and course requirements are the same as for the systems engineering program listed above with the exception that students wishing to elect a concentration in project management should select the following two courses:

595.461 Technical Group Management
595.466 Financial and Contract Management

Biomedical Systems Engineering
Systems engineering is playing an increasing role in the development and implementation of modern complex biomedical systems. If today’s practicing engineers and scientists are to develop new and much needed biomedical technologies and systems, they need to plan, coordinate, and oversee interdisciplinary team efforts that translate operational needs into technology solutions, and whose tools and skills determine whether a system will meet cost, schedule, and performance goals. At the same time, they should understand the fundamental nature and interaction of biological and physiological systems.

This new concentration trains students to integrate the diverse areas of biomedical engineering with the skills and tools of a systems engineer. Students should expect they will have a deeper understanding of the field and a broader perspective of the system challenges of biomedical systems that they will be able to immediately implement in their places of employment.

Admissions Requirements
Applicants must meet the general requirements for admission to the Engineering for Professionals program. In addition, the applicant should have a degree in a technical field and have a minimum of one year of appropriate full-time work experience in that field. The applicant must have compiled an average of a B or above for all courses in mathematics, physics, engineering, and other engineering or physical sciences. The applicant’s preparation must have included mathematics through ordinary differential equations, calculus-based physics, and organic and inorganic chemistry. A resume must be submitted with the application form.

Course Requirements
A total of 10 one-semester courses must be completed within five years. The curriculum consists of six required courses in systems engineering, three required courses in biomedical engineering, and an elective biomedical course. Prior or concurrent completion of 645.467 Management of Systems Projects and 645.462 Introduction to Systems Engineering (taken in either order) is generally a prerequisite to more advanced courses in the curriculum.

Systems Engineering Core Courses
The core systems engineering curriculum has six required courses:

645.462 Introduction to Systems Engineering
645.467 Management of Systems Projects
645.767 System Conceptual Design
645.768 System Design and Integration
645.769 System Test and Evaluation
645.805 Biomedical Systems Engineering Master’s Project

Biomedical Core Courses
Required biomedical courses are offered at the Applied Physics Laboratory or the Dorsey Center:

585.405-406 Physiology for Applied Biomedical Engineering
585.409 Mathematical Methods for Applied Biomedical Engineering

Elective Courses
Students are required to take an elective course selected from the following with advisor approval. Please note that courses prefixed by 580 are offered at the Homewood campus in Baltimore.
Four biomedical courses come from the following set of courses offered in the Applied Biomedical Engineering curriculum or, with an advisor’s approval, from those offered in the JHU Biomedical Engineering Department (listed below; note that these courses are taught either at the medical school or the Homewood campus during the day). Students are required to file a program plan listing the courses they plan to take, which must be approved by the student’s advisor.

- 580.630 Theoretical Neuroscience
- 580.644 Neural Control of Movement and Vocalization
- 580.651 Introduction to Nonlinear Dynamics in Physiology
- 580.702 Neuroengineering
- 585.408 Medical Sensors and Devices
- 585.608 Biomaterials
- 585.611 Practices of Biomedical Engineering
- 585.614 Applications of Physics and Technology to Biomedicine
- 585.626 Biomimetics in Biomedical Engineering
- 585.634 Biophotonics

Information Assurance Systems Engineering Concentration

Systems engineering methodologies are required to develop, evaluate, protect, and maintain highly integrated and complex information systems to ensure these systems are able to work together effectively and efficiently in the face of increasing threats and advancing technologies. When sophisticated attempts are made to exploit weaknesses in information systems, attention is required in the computing environments, the supporting infrastructure, and the boundaries and interfaces of their networks. A systems approach to the security architecture, design, development, and testing of information systems will address information assurance requirements to control access, protect assets, validate security subsystems, train users, and manage systems.

The information assurance (IA) operations protect and defend information and information systems to ensure their availability, integrity, authentication, confidentiality, and non-repudiation. IA provides for restoration of information systems by incorporating protection, detection, and reaction capabilities focused on risk management to address threats using a cost-effective approach in the context of the environment of the fielded systems. Systems engineering methodologies can be employed to determine where vulnerabilities exist, what trade-offs are involved in protecting information systems, and which techniques are best suited for defending them.

This concentration trains students to integrate the diverse areas of information assurance with the skills and tools of a systems engineer and a computer scientist. Students will gain a deeper understanding of the field and a broader perspective of the system challenges, which they will be able to immediately implement on the job.

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program in the Engineering for Professionals program. In addition, the applicant should have a degree in a technical field and have a minimum of one year of appropriate full-time work experience in that field. The applicant must have compiled an average of a B or above for courses in mathematics, physics, engineering, and physical sciences. The applicant’s preparation must have included mathematics through integral calculus and a course in programming. A resume must be submitted with the application form.

Course Requirements

A total of 10 one-semester courses must be completed within five years. The curriculum consists of six required courses in systems engineering, two required courses in information assurance, and two elective courses in information assurance. Prior or concurrent completion of 645.467 Management of Systems Projects and 645.462 Introduction to Systems Engineering (taken in either order) is generally a prerequisite to more advanced courses in the curriculum.

Systems Engineering Core Courses

The core systems engineering curriculum has six required courses:

- 645.462 Introduction to Systems Engineering
- 645.467 Management of Systems Projects
- 645.767 System Conceptual Design
- 645.768 System Design and Integration
- 645.769 System Test and Evaluation
- 645.806 Information Assurance Systems Engineering Master’s Project

Information Assurance Core Courses

Four IA courses come from the following set of courses offered in the information assurance curriculum. Students are required to file a program plan listing the courses they plan to take. The program plan must be approved by the student’s advisor.

The two required information assurance courses are offered at the Applied Physics Laboratory:

- 695.401 Foundations of Information Assurance
- 695.791 Information Assurance Architectures and Technologies

Elective Courses

Two additional elective courses may be selected from these courses offered at the Applied Physics Laboratory or the Dorsey Center:

- 695.421 Public Key Infrastructure and Managing E-Security
- 695.422 WWW Security
- 695.721 Network Security
Modeling and Simulation Systems Engineering Concentration

One of the most important tools in systems engineering is the use of modeling and simulation processes to help elicit system requirements, support the analysis of alternatives, estimate and optimize cost and schedule, predict system performance, and improve systems processes. Models and simulations help perform experiments that may not be possible in the real world due to physical, environmental, or economic constraints.

Modeling and simulation should be used to support engineering activities throughout the full systems life cycle. From concept, design, and testing to evaluating product performance, model-based tools provide the means for experimentation and analysis to better understand the attributes and expected behavior of the system and to evaluate the processes and strategies needed to optimize the system performance. M&S also accounts for human systems integration, manufacturability, and sustaining the product.

In this systems engineering concentration, students complete the core systems engineering courses, followed by a rigorous course in statistical methods and data analysis. This latter course from the Applied and Computational Mathematics program provides an understanding of statistical techniques and the use of several methodologies for practical world problems. Two additional required courses provide the use of modeling and simulation following the systems engineering life cycle and experience in advanced modeling and simulation topics including VV&A, markup languages, cost modeling, simulation interoperability, and collaborative environments. Students are expected to take the two-semester systems engineering master's thesis course that will lead to a publication.

Admission Requirements

Applicants must meet the general requirements for admission to the Engineering for Professionals program. In addition, the applicant should have a degree in a technical field and have a minimum of one year of appropriate full-time work experience in that field. The applicant must have compiled an average of a B or above for all courses in mathematics, physics, engineering, and other engineering or physical sciences. The applicant's preparation must have included mathematics through multivariate calculus. A resume must be submitted with the application form.

Course Requirements

A total of 10 one-semester courses must be completed within five years. The curriculum consists of 10 required courses in systems engineering, including a two-semester systems engineering master's thesis. Prior or concurrent completion of 645.467 Management of Systems Projects and 645.462 Introduction to Systems Engineering (taken in either order) is generally a prerequisite to more advanced courses in the curriculum.

Systems Engineering Core Courses

The core systems engineering curriculum has seven required courses:

- 645.462 Introduction to Systems Engineering
- 645.467 Management of Systems Projects
- 645.767 System Conceptual Design
- 645.768 System Design and Integration
- 645.769 System Test and Evaluation
- 645.801-802 Systems Engineering Master's Thesis

Modeling and Simulation Core Courses

Three required modeling and simulation courses are:

- 625.403 Statistical Methods and Data Analysis
- 645.757 Foundations of Modeling & Simulation in Systems Engineering
- 645.758 Advanced Systems Modeling and Simulation

Software Systems Engineering Concentration

Systems engineers are increasingly responsible for developing software-intensive systems. This concentration provides the fundamental knowledge and skills required for specifying and implementing a system development, combined with the competencies needed to define and document software requirements, analyze and design software systems, and manage the software project activities. Following the core systems engineering courses, software courses emphasize structural and design techniques, software safety, software project cost and schedule estimation, and techniques for evaluating software maturity and efficiency.

This concentration will provide systems engineers with the knowledge of software engineering and management to improve their effectiveness with systems development that includes significant software components. Teamwork and group projects are emphasized throughout the curriculum to prepare students for real life work environments.

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program in the the Engineering for Professional program. In addition, the applicant should have a degree in a technical field and have a minimum of one year of appropriate full-time work experience in that field. The applicant must have compiled an average of a B or above for all courses in mathematics, physics, engineering, and other engineering or physical sciences. The applicant's preparation must have included mathematics through integral calculus and a course in programming. A resume must be submitted with the application form.

Course Requirements

A total of 10 one-semester courses must be completed within five years. The curriculum consists of six required courses in systems engineering and four courses in software engineering. Prior or concurrent completion of 645.467 Management of Systems Projects and 645.462 Introduction to Systems Engineering (taken in either order) is generally a prerequisite to more advanced courses in the curriculum.
Graduate Programs

Systems Engineering

The program builds upon the existing M.S. in Systems Engineering that provides an integrated foundation course series based on the acquisition project life cycle. The hundreds of EP systems engineering graduates over the last 15 years, along with SE graduates of other institutions, are now engaged in leading their organizations in programs of increasing value and complexity.

This certificate program will provide the opportunity to expand the student’s experience and knowledge horizons to encompass the enterprise and integrated systems environments. An emphasis on commercial and government challenges will be explored. The courses are taught by current advanced systems engineering practitioners who are intimately familiar with the current challenges facing government and industry. Students should continue to expect relevant, applied, and meaningful hands-on learning experiences coupled with sound research into the latest problems facing systems engineering.

Admissions Requirements

Applicants must have completed a master of science degree in systems engineering (or a master of science in electrical engineering, mechanical engineering, computer science, or a related technical field) and possess at least 10 years of professional experience as a practicing systems engineer. Alternatively, students must have earned a master of science in a technical field, completed 645.462 Introduction to Systems Engineering, and possess at least five years of professional work experience as a practicing systems engineer. Eligibility will be determined by a current resume and verification in an employer recommendation letter. JHU graduates must supply evidence of their previous systems engineering degree through a copy of their transcript. Systems engineering graduates of other institutions must request official transcripts be sent to EP.

Course Requirements

The Advanced Certificate for Post-Master’s Study is awarded after completion of six courses beyond the Master of Science in Systems Engineering. It is intended to add depth and breadth in the discipline. The program consists of four required courses and two advanced electives. The student’s program will be planned in consultation with an advisor. The two advanced electives can be two semesters of an independent systems engineering research project leading to a paper suitable for submission for publication in a refereed journal or two EP 700-level courses in EP program approved by the student advisor.

Required Courses

- 645.742 Management of Complex Systems
- 645.753 Enterprise Systems Engineering
- 645.761 Systems Architecting
- 645.771 System of Systems Engineering

Elective Courses

- 645.803-804 Post Master’s Systems Engineering Research Project (2 semesters) or Two approved 700-level courses in the EP offering
Course Descriptions

645.462 Introduction to Systems Engineering
This course introduces students to the fundamental principles of systems engineering and their application to the development of complex systems. It describes how the systems engineering viewpoint differs from that of the engineering specialist and the essential role that systems engineering plays as an integral component of program management. Topics include requirements analysis, concept definition, system synthesis, design trade-offs, risk assessment, interface definition, engineering design, system integration, and related systems engineering activities. The course defines the breadth and depth of the knowledge that the systems engineer must acquire concerning the characteristics of the diverse components that constitute the total system. Special topics such as simulation and models and test and evaluation are discussed in relation to the systems engineering viewpoint. Students address typical systems engineering problems that highlight important issues and methods of technical problem resolution.

Prerequisite: An engineering, science, or mathematics degree and one year of experience in science or engineering.

Biemer, Daghiita, Flanigan, Pardoe, Pavalko, Reitz, Ryder, Smith, Sweeney, Syed, Thompson, Anderson, Kane, Selby, Brown

645.467 Management of Systems Projects
The course addresses the management of a technical project from concept to operational use, with emphasis on the functions, roles, and responsibilities of the project manager. From the development of a proposal to the delivery of a product to a customer, the efforts to conceive, plan, budget, schedule, monitor, control/direct, and report the progress of the project are discussed. Throughout the project life cycle, the need for good communications, interface and configuration management, and conflict resolution is emphasized. Students assume the role of project managers who must use management tools such as WBS, EVM, and CPN and who must address typical problems that arise in the conduct of a high-technology systems project.

Prerequisite: Admission into the systems engineering program (not available for technical management students).

Bernstein, Brown, Cormier, Dever, Holbrook, Trent, Utara

645.469 Systems Engineering of Deployed Systems
Systems engineering theory typically focuses on the early design and development phases of a system’s life cycle, yet over the life of a system, the bulk of engineering effort and the associated costs are not realized until the operations and support (O&S) phase. This course will examine the importance of designing O&S considerations early in a system’s life cycle by identifying the appropriate logistic elements and measures, while introducing the necessary analytical processes and tools to support end-to-end life cycle engineering requirements.

Manufacturing and production operations will be presented along with the elements that support a system once it is fielded (maintenance planning, reliability prediction, supply support, training, shipping, and system disposal). The course will also explore the requirements and processes associated with major upgrades to deployed systems and the logistics management techniques that must be implemented during initial fielding and deployment. A class project and real world case studies will underscore the theory and techniques associated with deployed systems engineering.

Prerequisite: 645.462 Introduction to Systems Engineering or 645.467 Management of Systems Projects.

Finlayson, Herdick

645.742 Management of Complex Systems
Traditional systems engineering is usually applied to closed, precise, and recursive systems with the assertion that the methodologies used can be scaled up to more elaborate system of systems. This course addresses the more realistic and emerging field of the management of complex systems, where multiple current development efforts with disparate and non-linear attributes characterize the system components. Engineering complex systems must account for the likelihood of multiple disciplines, differing scales, often unpredictable future states, irreducible uncertainty, and non-linear behavior. Multi-customer, -corporations, -governments, -technologies, and -systems now must be considered on a global scale with a mix of new and legacy systems. The student will be encouraged to think differently and creatively about the management approaches to developing complex systems and to utilize adaptive strategies and tools including modeling and simulation, pattern recognition, nonlinear dynamics, chaos theory, and control systems. Special attention will be given to risk assessment and management for dynamic systems. Case studies and examples will be drawn from commercial industry and DoD systems acquisition programs. Students will be expected to discuss several readings and complete an academic paper to explore in depth one or more of the concepts discussed.

Prerequisite: M.S. in Systems Engineering or advisor approval.

Biemer, Crownover

645.753 Enterprise Systems Engineering
Enterprise systems engineering is a multidisciplinary approach combining systems engineering and strategic management to address methods and approaches for aligning system architectures with enterprise business rules and the underlying IT architecture; development and implementation consistent with enterprise strategic objectives; and the total enterprise system and capabilities, with diverse complex subsystems. This course uses the systems engineering life cycle as a framework for linking outcome-based engineering analysis and decision making with enterprise strategic objectives, addressing methods and tools for managing complexity, determining
measures of effectiveness, and assessing return on investment from an engineering perspective. The complex nature of enterprises will be discussed, including the multiplicity of technical and business components involved in delivering enterprise capability, as well as methods for modeling and analysis of their interdependence. Business and technical interdependencies between infrastructure, computing, applications, services, and end-user environments will be discussed. Particular attention will be paid to outcome-based management, understanding total cost of ownership for delivered capabilities, and end-to-end systems engineering.

Prerequisite: M.S. in Systems Engineering or advisor approval.

Coolahan, Jones

645.756 Metrics, Modeling, and Simulation for Systems Engineering

This course takes an integrated, in-depth view of foundational statistical concepts, modeling, and simulation techniques. Knowledge of typical system-level key performance parameters (KPPs) and their stochastic characterization is critical to the systems engineering process as the basis for decision making from early system conceptualization through retirement. Relevant probability and statistics concepts are covered in context of SE decision points. Techniques in experimental design, data collection, analysis, and modeling of system metrics as a function of system use and environment are explored as they pertain to characterizing system, subsystem, and component performance. Finally, implementing models in analytic simulations to support requirements, design, upgrade, and replacement/retirement phases of the SE process provides the systems engineer with a solid foundation for making and justifying difficult decisions.

Prerequisites: 645.462 Introduction to Systems Engineering, 645.467 Management of Systems Projects, and 645.767 System Conceptual Design.

West

645.757 Foundations of Modeling and Simulation in Systems Engineering

This course provides an introduction to the field of modeling and simulation (M&S) from the perspective of M&S as an essential tool for systems engineering. Topics emphasize the use of M&S to establish and verify key performance parameters, system and subsystem functionality, and interfaces. The course presents an overview of the types of models and simulations used across the phases of the systems engineering life cycle. The strengths and limitations of M&S are explored with respect to the application of M&S use in SE. Examples will be given for several types of systems, including systems developed under the U.S. Department of Defense (DoD) acquisition process. State-of-the-art M&S tools are introduced, and each student is given the opportunity to construct a model or simulation using a tool of their choice. The Arena modeling tool will be used for some examples. Upon completion of the course, the student will be able to recognize when M&S will provide meaningful support to a technical program, select the appropriate modeling techniques for a given task, lead the development of the model and the modeling of the input data, and analyze the results to support decisions at key milestones of a system’s lifecycle.

Prerequisite: 645.462 Introduction to Systems Engineering.

Coolahan, Jones

645.758 Advanced Systems Modeling Simulation

This course is a continuation of Foundations of Modeling and Simulation in Systems Engineering, and provides in-depth exposure to the field of modeling and simulation from the perspective of M&S as an essential tool for systems engineering. Advanced statistical methods are used to conduct requirements-driven simulation analysis and experimentation. The course provides treatment of advanced M&S topics, including verification, validation, and accreditation techniques; methods for simulation interoperability and composability; modeling of the system environment, both natural and man-made; modeling of system costs; and the establishment of collaborative M&S environments. The course also explores continuous and real-time simulation. Students are exposed to the techniques used to form conceptual models of mechanical (both translational and rotational), electrical, fluid, thermal, biological, and hybrid systems. The conceptual models are transformed into mathematical models and implemented in a modern simulation package. State-of-the-art tools are explored, and each student is given the opportunity to conduct a simulation study of a complex system. Each student will present a case study and complete a project. Upon completion of the course, the student will be able to conduct or lead the development of the model of a complex physical system and the modeling of the input data, and can analyze the results to support decisions at key milestones of a system’s lifecycle.

Prerequisites: 645.757 Foundations of Modeling and Simulation in Systems Engineering and 625.403 Statistical Method and Data Analysis.

Coolahan, Jones

645.761 Systems Architecting

As the systems that systems engineers face become more complex, it is no longer sufficient to use “good engineering practices.” The complex systems of today need to be architected before design work can begin. This course examines the principles and art of systems architecting when developing both individual systems and systems that are components of a system or federation of systems. The objective is to provide students with the principles, techniques, and hands-on experience of architecting modern complex systems. Students will learn the latest architecture development techniques using DoD and commercial architectural frameworks, then extending those frameworks to specific problems involving unique systems development environments. Topics include the management of underlying system and data models and the special architecting requirements of command, control, and commu-
nifications systems. Special attention will be placed on visualizing architecture artifacts—qualitatively and quantitatively evaluating architectures and the systems model they represent—and utilizing system architectures for investment decisions. Case studies from actual experiences will be presented.

Prerequisite: M.S. in Systems Engineering or advisor approval.

645.764 Software Systems Engineering

This course for systems engineers covers software engineering principles, artifacts, and management techniques for the development of software systems. Topics include software engineering processes and metrics, alignment of software systems with overall system design, software-unique aspects of project management, understanding important software engineering constraints (performance, security, networking, etc.), and technology and management trends in software engineering today. Student teams will conduct case studies for a project.

Prerequisite: 645.462 Introduction to Systems Engineering.
Note: Students may not take this course if they have already taken 595.763 Software Engineering Management. This course is not available to technical management students.

Mosley, Saunders, Pafford, Britcher

645.767 System Conceptual Design

This course addresses in detail the systems engineer’s responsibilities and activities during the conceptual phases of a system development program. Systems engineering tools commonly employed at this stage of a program are presented along with selected problems that illustrate both the applicability and limitations of commonly employed tools and procedures. The course steps through conceptual design beginning with analysis of needs and objectives and proceeding to the exploration of alternative concepts and the selection of a concept that best meets goals of performance, timeliness, and affordability. Topics include definition of operational scenarios, functional analysis, risk assessment, system trade-offs, measures of effectiveness, and requirements formulation. Emphasis is on the application of these systems engineering techniques in a team environment to a class project. Students apply systems engineering methods learned from reading and lectures to the development of a realistic system in an ongoing project in a team format.

Prerequisites: 645.462 Introduction to Systems Engineering and 645.467 Management of Systems Projects, or permission of the student’s advisor and the course instructor.

Biemer, Britcher, Flanigan, Levin, Russell, Ryder, Secen, Smith, Smyth, Utara

645.768 System Design and Integration

This course addresses the systems engineering objectives, responsibilities, and activities during the demonstration and validation and the engineering and manufacturing development phases of a system development program. Systems engineering procedures and tools employed during these phases are identified and their use illustrated. Topics include the relationship between a system specification and the system design, systems engineering management plan, risk management, system development models, customer integration into the design process, and design disciplines and practices. The course uses a system problem scenario extensively to illustrate systems engineering principles and specific product design issues.

Prerequisite: 645.767 System Conceptual Design or permission of the student’s advisor and the instructor.

Ahlbrand, Britcher, Crownover, Holub, Schulmeyer, Utara, Warren, Saunders, Barton

645.769 System Test and Evaluation

This course focuses on the application of systems engineering principles to the test and evaluation of system elements and, ultimately, of the total system. Test requirements, selection of critical test parameters, analysis of test results, and determination of remedial action in the event of discrepancies are all systems engineering functions. Topics include validation and verification, similarities and differences in the nature of hardware and software testing, test tools and test procedures, testing during hardware-software integration, quality assurance test, environmental test, and operational test and evaluation. Student problems include scenario case studies using examples developed in the several previous courses.

Prerequisite: 645.768 System Design and Integration or permission of the student’s advisor and the instructor.

Biemer, Fidler, Holub, Kryzstan, Sprigg, O’Connor, Selby, Ziarko

645.771 System of Systems Engineering

This course addresses the special engineering problems associated with conceiving, developing, and operating systems composed of groups of complex systems closely linked to function as integral entities. The course will start with the underlying fundamentals of systems’ requirements, design, test and evaluation, and deployment, and how they are altered in the multi-system environment. These topics will then be extended to information flow and system interoperability, confederated modeling and simulation, use of commercial off-the-shelf elements, and systems engineering collaboration between different organizations. Advanced principles of information fusion, causality theory with Bayesian networks, and capability dependencies will be explored. Several case studies will be discussed for specific military system of systems, including missile defense and combatant vehicle design, as well as selected commercial examples.

Prerequisite: M.S. in Systems Engineering or advisor approval.

Biemer, Fidler

645.800 Systems Engineering Master’s Project

This course provides the experience of applying systems engineering principles and skills learned in the formal courses to a specific practical project that is suggested by the student and
Systems Engineering

is presented in a formal proposal. The product of the system project is a final report, as well as interim reports and an oral presentation to permit review of the project objectives and approach. A student typically has a mentor who is a member of the systems engineering faculty. The program chair, vice chair, and mentor review proposals and reports. The total time required for this course is comparable to the combined class and study time for the formal courses (formerly 645.770).

Prerequisite: 645.769 System Test and Evaluation or permission of the program chair or vice chair.

Seymour

645.801-802 Systems Engineering Master’s Thesis

This course is designed for students in the systems engineering master’s program, working with an advisor to conduct independent research in the field of systems engineering leading to a paper that is publishable in a refereed journal. It is also desirable the paper be presented in a professional meeting.

The intent of the research is to advance the body of knowledge and the understanding of systems engineering practices, the improvement of systems engineering practices in industry and in government, the evolution of systems engineering tools and techniques, and the solution of systems development issues in the acquisition of advanced systems. Students who are intending to pursue a doctoral degree should enroll in this course.

Prerequisite: Completion of all other courses applicable to the systems engineering master’s degree.

Staff

645.803-804 Post Master’s Systems Engineering Research Project

This course is designed for students in the systems engineering post-master’s certificate program, working with an advisor to conduct independent research in the field of systems engineering leading to a paper that is publishable in a refereed journal.

It is also desirable the paper be presented in a professional meeting. The intent of the research is to advance the body of knowledge and the understanding of systems engineering practices, the improvement of systems engineering practices in industry and in government, the evolution of systems engineering tools and techniques, and the solution of systems development issues in the acquisition of advanced systems.

Prerequisite: M.S. in systems engineering and three of the four required advanced certificate courses.

Staff

645.805 Biomedical Systems Engineering Master’s Project

This course is intended for students in the biomedical systems engineering concentration and provides the experience of applying systems engineering principles and skills learned in the formal courses to a specific biomedical systems project that is suggested by the student and is presented in a formal proposal. The product of the biomedical system project is a final report, as well as interim reports and an oral presentation to permit review of the project objectives and approach.

A student typically has a mentor who is a member of the biomedical or systems engineering faculty. The biomedical program chair, the systems engineering vice chair, a systems engineering mentor, and a biomedical mentor review student proposals and reports. The total time required for this course is comparable to the combined class and study time for the formal courses.

Prerequisite: Completion of all courses applicable to the biomedical systems engineering master’s degree.

Staff

645.806 Information Assurance Systems Engineering Master’s Project

This course is intended for students in the information assurance systems engineering concentration and provides the experience of applying systems engineering principles and skills learned in the formal courses to a specific information assurance system project that is suggested by the student and is presented in a formal proposal. The product of the information assurance system project is a final report, as well as interim reports and an oral presentation to permit review of the project objectives and approach.

A student typically has a mentor who is a member of the computer science or systems engineering faculty. The computer science program chair, the systems engineering vice chair, a systems engineering mentor, and a computer science mentor review student proposals and reports. The total time required for this course is comparable to the combined class and study time for the formal courses.

Prerequisite: Completion of all other courses applicable to the information assurance systems engineering master’s degree.

Staff

645.807 Software Systems Engineering Master’s Project

This course is intended for students in the software systems engineering concentration and provides the experience of applying systems engineering principles and skills learned in the formal courses to a specific software systems project that is suggested by the student and is presented in a formal proposal. The product of the software system project is a final report, as well as interim reports and an oral presentation to permit review of the project objectives and approach.

A student typically has a mentor who is a member of the computer science or systems engineering faculty. The computer science program chair, the systems engineering vice chair, a systems engineering mentor, and a computer science mentor review student proposals and reports. The total time required for this course is comparable to the combined class and study time for the formal courses.

Prerequisite: Completion of all other courses applicable to the software systems engineering master’s degree.

Staff
Technical Management

Supervisory and management positions in scientific and engineering organizations are usually awarded to staff members who have earned the respect of management and co-workers by excelling in their areas of technical expertise. They then act as "lead scientists" or "lead engineers," directing the work of other scientists or engineers. Although they have proved that they have good judgment in strictly technical matters, there may be nothing in their past education or work experience that has prepared them for supervisory and management responsibilities.

The overall objective of this program is to prepare individuals trained and experienced in science or engineering in the elements of leading technical projects and organizing and supervising technical personnel. The program is organized along five concentrations: project management—the organization and direction of specific technical projects; organization management—the organization and leading of people to accomplish technical objectives; and project/organization management—a combination of the previous two. A concentration in technical innovation management addresses the personal and organizational management of innovation and the development of new technical ventures. The newly offered concentration in quality management will focus on preparing technical leaders to manage programs to high-quality standards like ISO9001, AS9100 and CMMI. The concentration will offer an introductory course as well as advanced courses focusing on the quality aspects of technical programs and software engineering.

Instructional methodology employs a mixture of lectures on theory and practice by experienced technical senior leaders and executives and realistic problem situations in which students play a management role, dealing with problems and making decisions that are typically required of technical managers. Management theories and tools are presented in the context of problem situations.

Appropriate emphasis is given to that blend of technical, administrative, business, and interpersonal skills required for the successful management of continuously changing high-technology organizations and projects.

Students are encouraged to pursue the entire master's degree but in special approved cases may apply for the Graduate Certificate in Technical Management. The requirements for admission are the same as for the master's degree and the student must complete six courses, as approved by the program chair/vice chair, with a grade of A or B (see Admission Requirements).

Program Committee

Joseph J. Suter, Chair
Principal Professional Staff
Applied Physics Laboratory

Lisa A. Blodgett
Principal Professional Staff
Applied Physics Laboratory

Admission Requirements

Applicants must meet the general requirements for admission to a graduate program outlined in this catalog (see Admission Requirements). In addition, the applicant must have a degree in a science or engineering field and must have a minimum of two years of relevant full-time work experience in that field. A resume must be submitted with the application form.

Course Requirements

All students complete 10 one-term courses within five years. Students may elect to pursue a concentration in project management, organization management, project/organization management, technical innovation management, or quality management.

Neither a thesis nor knowledge of a foreign language is required in this program. Academic standards governing graduate study, as specified in this catalog, must be maintained.

I. Required Courses for Project Management

(7 courses)

595.460 Introduction to Project Management
595.461 Technical Group Management
595.464 Project Planning and Control
595.465 Communications in Technical Organizations
595.466 Financial and Contract Management
595.763 Software Engineering Management
645.462 Introduction to Systems Engineering

II. Required Courses for Organization Management

(7 courses)

595.460 Introduction to Project Management
595.461 Technical Group Management
595.463 Technical Personnel Management
595.464 Project Planning and Control
595.465 Communications in Technical Organizations
595.466 Financial and Contract Management
595.762 Management of Technical Organizations
III. Required Courses for Project/Organization Management (9 courses)

- 595.460 Introduction to Project Management
- 595.461 Technical Group Management
- 595.463 Technical Personnel Management
- 595.464 Project Planning and Control
- 595.465 Communications in Technical Organizations
- 595.466 Financial and Contract Management
- 595.762 Management of Technical Organizations
- 595.763 Software Engineering Management
- 645.462 Introduction to Systems Engineering

IV. Required Courses for Technical Innovation Management (10 courses)

The following eight:

- 595.460 Introduction to Project Management
- 595.461 Technical Group Management
- 595.464 Project Planning and Control
- 595.465 Communications in Technical Organizations
- 595.466 Financial and Contract Management
- 595.468 Fundamentals of Technical Innovation in Organizations
- 605.791 New Technical Ventures
- 635.792 Management of Innovation

And two courses from:

- 595.463 Technical Personnel Management
- 595.762 Management of Technical Organizations
- 595.763 Software Engineering Management
- 595.766 Advanced Technology
- 645.462 Introduction to Systems Engineering

V. Required Courses for Quality Management (10 courses)

The following seven:

- 595.460 Introduction to Project Management
- 595.464 Project Planning and Control
- 595.740 Quality Management for Aerospace Programs
- 595.741 Engineering Quality Management
- 595.760 Introduction to Quality Management
- 595.763 Software Engineering Management
- 645.462 Introduction to Systems Engineering

And three elective courses from:

- 595.461 Technical Group Management
- 595.466 Financial and Contract Management
- 595.468 Fundamentals of Technical Innovation in Organizations
- 595.766 Advanced Technology

Course Descriptions

Technical Management courses are primarily for those students who have been accepted as candidates for the master’s degree. Degree candidates are given preference in registering. Special Students, including students from other degree programs, may be admitted on a space-available basis, providing they meet the same admission criteria as technical management degree candidates.

Prior or concurrent completion of 595.460 Introduction to Project Management and 595.461 Technical Group Management (taken in either order) are the general prerequisites to more advanced courses. Specific prerequisites for each course are shown under the individual course descriptions. An approved program plan is required for preferential placement in registering.

Courses numbered 600-level and above are open only to students who have been admitted to graduate status.

Courses are offered at the APL Education Center, the Montgomery County Campus, the Dorsey Center, and the Southern Maryland Higher Education Center. Please refer to the Course Schedule published each term for exact dates, times, locations, fees, and instructors.

595.460 Introduction to Project Management

This course concentrates on the general methodology of managing a technical project from concept to operational use, with emphasis on the functions, roles, and responsibilities of the project manager. Topics include career aspects of project management; business factors affecting the project and the manager; project organization, planning, execution, and communications; the project life cycle; risk analysis; interface management; design review; design control assessment; reporting; and reaction to critical problems. Students are formed into groups, presented with a scenario that simulates the development of a high technology system, and are assigned to make decisions required of the project manager in the execution of the project. The project manager’s decisions must then be effectively communicated (and perhaps defended) to a variety of audiences (represented by other students and faculty) that
include top management, the customer, functional management, and members of the project team.

Prerequisites: An engineering, science, or mathematics degree and two years’ work experience in science or engineering.

Bates, Buchanan, Dabbah, Finlayson, Krueger, Powers, Seifert, Supplee, Tarchalski, Tuck, Wheeler

595.461 **Technical Group Management**

This course covers the general functions and responsibilities of a technical group supervisor. Topics include functions of a technical group in an R&D or engineering organization; primary responsibilities of group supervisor; interactions with management, support organization, and project organization; organization of projects in group structure; development of work costs and schedules; progress monitoring and reporting; introduction to personnel management—leadership, motivation, evaluation, and professional growth; reaction to critical problems; technical leadership; and planning for the future. Students assume the roles of technical group supervisors in a high-technology organization. They address typical problems in delegating responsibilities, staffing new projects, dealing with project managers, and handling conflicts and priorities.

Prerequisites: An engineering, science, or mathematics degree and two years’ work experience in science or engineering or permission of the program chair/vice chair.

Bjerkaas, Buckman, Horne, Keane, Wetzel, Fletcher

595.463 **Technical Personnel Management**

This course reviews the problems of personnel management in a technical organization. Topics include environmental requirements for effective and innovative technical efforts, direction and motivation, leadership behavior, recruitment of technical staff, orientation and training programs, personnel placement and reassignment, assignment of work, salary administration, personnel evaluation and counseling, professional growth and promotion, technical obsolescence and retraining, equal opportunity programs, employee grievances, and handling of conflict situations. Students explore typical personnel management situations that arise in a technical organization.

Prerequisite: 595.461 Technical Group Management or permission of the student’s advisor or the course instructor.

Buckman, Dickson, Jackson, Lasky, Seifert

595.464 **Project Planning and Control**

This course concentrates on the exploration of the planning and control decisions required when developing a new high technology product. Students are formed into groups and presented with a scenario that requires the development of a plan that will guide their organization through entry into a new business area. When developing the new product-offering plan, students must consider a wide variety of questions that their top management will need to have answered prior to making a decision to either accept or reject the plan. Other topics include the role of planning and control in project management; processes for responding to a request for proposal (RFP); assignments to prepare a statement of work (SOW), a work breakdown structure (WBS), and a critical path network (CPN) for the new product development plan; earned value performance measurement; analysis of project performance measures; integrated project planning; new product development considerations; enterprise information systems applications; and risk management.

Prerequisites: 595.460 Introduction to Project Management or the permission of the student’s advisor or the course instructor.

Bigelow, Chism, Liggett, McLoughlin, Supplee, Utara, Shinn

595.465 **Communications in Technical Organizations**

This course covers problems and instruction in human communications within a technical organization. Topics include the nature of difficulties in human communications (perception and cognition, semantics, individual differences in processing information, and listening), techniques for effective oral and written communications and presentations, problems in communication between supervisors and subordinates, assignment of work, and reporting to management and sponsors. Students assume roles in various interpersonal situations, meetings, discussions, and conflicts calling for a supervisor to write letters and memoranda; they also deliver oral presentations and participate in group and one-on-one discussions.

Prerequisite: 595.460 Introduction to Project Management or 595.461 Technical Group Management, completed or taken concurrently.

Thompson

595.466 **Financial and Contract Management**

This course is an introduction to financial and contract management for technical managers. Topics include financial and management accounting (including elementary accounting principles, assets, liabilities, and stockholders’ equity); direct and indirect costs, revenues, and profits; indices to financial position; use of financial reports; return on investment, net present value; internal rate of return; and financial management (including cash and funds flow statements). An introduction to the principles of contract formation is presented—highlighting the distinctive characteristics of contracting with the federal government—as well as the team concept for effective contracting and the role of the program manager as a key team member. Subcontract management, competitive negotiation techniques, contract financing, and cost reimbursement are also included. Case studies supplement theoretical discussions.

Prerequisite: 595.460 Introduction to Project Management or 595.461 Technical Group Management, completed or taken concurrently.

Langhauser, Liggett, Warner, Williamson, Wyant
595.468 Fundamentals of Technical Innovation in Organizations

This course is designed to take graduate students majoring primarily in technical disciplines through the fundamental aspects of managing technical innovations in organizations. It will draw on interdisciplinary concepts from the technical and managerial fields of studies, and will specifically focus on how technical innovation management drives the long-term competitiveness of organizations operating in the global socioeconomic environment. One of the major objectives of this course is to help students understand various fundamental frameworks for managing technical resources, technical capabilities, and technical competencies for growth and renewal of their enterprises. Students will learn the basics of knowledge management, intellectual property rights, and product-process lifecycle vis-à-vis international trade patterns.

Sharif, Swann

595 740 Assuring Success of Aerospace Programs

Technical managers, systems engineers, lead engineers, and mission assurance professionals will benefit from this course, which focuses on the leadership of system safety and mission assurance activities throughout the life cycle of a project to achieve mission success. This advanced course provides crucial lessons learned and proven best practices that technical managers need to know to be successful. The integrated application of mission assurance and system engineering principles and techniques is presented in the context of aerospace programs, and is also applicable to other advanced technology research and development programs. Students discuss critical risk-based decision making required from system concept definition and program planning through design, procurement, manufacturing, integration and test, launch, and mission operations. Shared experiences by senior aerospace leaders and extensive case studies of actual mishaps explore quality management topics relevant to aircraft, missiles, launch vehicles, satellites, and space vehicles. The course addresses contemporary leadership themes, government policies, and aerospace industry trends in mission assurance requirements, organizational structure, knowledge sharing and communication, independent review, audit, and assessment. Mission assurance disciplines covered include risk management, system safety, reliability engineering, software assurance, supply chain management, parts and materials, configuration management, requirements verification and validation, nonconformance, and anomaly tracking and trending.

Seifert, Smith

595.760 Introduction to Quality Management

Quality management is developed as an integrated system of management for organizational improvement. Topics covered include the quality management guiding principles of leadership commitment, customer focus, employee involvement/empowerment, continuous process improvement, and the systematic use of measurement data. Case studies of technical organizations and government agency experiences describe adapting quality management in diverse organizations to improve the performance of products and services in satisfying customer needs. Students draw upon theory and practice, recent journal articles, multimedia presentations, and their own work experiences in tailoring applications of the material to their workplace. Guest speakers discuss real-world examples of the various aspects of quality management. Students participate in highly interactive classroom discussions based upon these materials and assignments.

Broderick, Hughes

595.762 Management of Technical Organizations

This course reviews challenges in the management of high-technology organizations at the senior technical management level. Topics include management of change and managing managers; establishing organization, technical, and business objectives and strategies; market analysis, technology, and product development; planning and costing; staffing and training to meet new needs; managing independent research and development; organizational conflicts; technical, financial, and personnel problems; and interaction with top management, staff executives, peers, and subordinates. Students assume the roles of senior technical managers dealing with typical problems in a department, including applied research, product development, and engineering support in an environment of rapidly changing technology.

Prerequisites: 595.463 Technical Personnel Management, 595.464 Project Planning and Control, or permission of the student’s advisor and the instructor.

Harris, Lindstrom, Mueller, Suter

595.763 Software Engineering Management

This course covers the activities, methods, and processes needed to manage software engineering and software development projects using current best practices. Course material...
Graduate Programs

Technical Management

highlights the differences and the similarities in managing software versus hardware projects. Topics include definition and description of project framework activities and umbrella activities; estimating technical resources, project schedules, and cost; fundamentals in tracking the project using earned value measurement; approaches to building quality, maintainability, security, and other desirable characteristics into the system from the beginning; communicating with teams and customers; and CMMI and ISO. Students will develop a management plan for a project.

Prerequisite: 645.462 Introduction to Systems Engineering or permission of the student’s advisor or the course instructor. Completion of 595.460 Introduction to Project Management is helpful.

Note: This course is not available to Systems Engineering students. Students may not take this course if they have taken 645.764 Executive Management of Technical Organizations.

Hopkins, Caruso

595.764 Executive Management of Technical Organizations

This course is under development and will be offered in Fall 2011.

Suter

595.766 Advanced Technology

This course emphasizes the impact of recent technological advances on new products, processes, and needs, as well as the role of the technical manager in rapidly evolving technologies. Subject areas and lecture content track current topics of interest, such as trends and developments in microelectronics, communications, computers, intelligent machines, and expert systems. Advanced technologies in application areas such as transportation, space, manufacturing, and biomedicine are also discussed. Students are encouraged to explore new technology areas and share information with each other. The seminar format encourages student participation that culminates in a term paper on a new or emerging technology area.

Prerequisite: 595.460 Introduction to Project Management and/or 645.462 Introduction to Systems Engineering or permission of the student’s adviser and the instructor.

Seymour, Strawser, Suter

595.802 Directed Studies in Technical Management

In this course qualified students are permitted to investigate possible research fields or to pursue problems of interest through reading or non-laboratory study under the direction of faculty members.

Prerequisite: The directed studies program proposal form (available from the student’s advisor) must be completed and approved prior to registration.

Note: Open only to candidates in the Master of Science in Technical Management program.

Suter
Telecommunications and Networking Option

The field of telecommunications and networking is one of great importance to our society. As a technical discipline, it draws from the more traditional fields of computer science and electrical engineering. Although the Engineering for Professionals program does not offer a separate master’s degree in telecommunications and networking, students may pursue an option in this area as degree candidates in either Computer Science or Electrical and Computer Engineering. The wide variety of courses from both areas allows students, working with advisors, to structure programs that meet their professional development needs.

Admission Requirements
Applicants must meet the general requirements for admission to graduate programs outlined in this catalog in the general Admission Requirements section. In addition, applicants must meet the specific program requirements for either Computer Science or Electrical and Computer Engineering (see those programs for specific admission information).

Course Requirements
Each degree candidate is assigned an advisor. Attainment of the degree requires completion of 10 one-term courses specifically approved by the advisor. Seven of the 10 courses must be in the telecommunications and networking subject area as defined by the course lists below. No more than one course with a grade of C, and no course with a grade lower than C, may be counted toward the degree. The requirements for computer science degree candidates and those for electrical and computer engineering candidates can be found in the program descriptions in the respective sections of the catalog. Students who select the telecommunications and networking option through the Computer Science program may take a maximum of three telecommunications and networking courses from electrical and computer engineering courses listed below. Electrical and computer engineering students who select the telecommunications and networking option are required to take either two or three computer science telecommunications and networking courses as electives. All of these electives must be selected from the computer science courses listed below.

Computer Science

- 605.471 Principles of Data Communications Networks
- 605.472 Computer Network Architectures and Protocols
- 605.475 Protocol Design and Simulation
- 605.477 Internetworking with TCP/IP I
- 605.478 Cellular Communications Systems
- 605.771 Wired and Wireless Local and Metropolitan Area Networks
- 605.772 Network Management
- 605.773 High-Speed Networking Technologies
- 605.774 Network Programming
- 605.775 Optical Networking Technology
- 605.777 Internetworking with TCP/IP II
- 605.778 Voice Over IP
- 695.422 WWW Security
- 695.701 Cryptology
- 695.721 Network Security

Electrical and Computer Engineering

- 525.408 Digital Telephony
- 525.414 Probability and Stochastic Processes for Engineers
- 525.416 Communication Systems Engineering
- 525.418 Antenna Systems
- 525.420 Electromagnetic Transmission Systems
- 525.437 Telecommunications Signal Processing
- 525.438 Introduction to Wireless Technology
- 525.440 Satellite Communications Systems
- 525.441 Computer and Data Communication Networks I
- 525.707 Error Control Coding
- 525.722 Wireless and Mobile Cellular Communications
- 525.723 Computer and Data Communication Networks II
- 525.735 MIMO Wireless Communications
- 525.736 Smart Antennas for Wireless Communications
- 525.738 Advanced Antenna Systems
- 525.747 Speech Processing
- 525.751 Software Radio for Wireless Communications
- 525.754 Wireless Communication Circuits I
- 525.755 Wireless Communication Circuits II
- 525.759 Image Compression, Packet Video, and Video Processing
- 525.761 Wireless and Wireline Network Integration
- 525.768 Wireless Networks
- 525.771 Propagation of Radio Waves in the Atmosphere
- 525.772 Fiber-Optic Communication Systems
- 525.776 Information Theory
- 525.783 Spread Spectrum Communications
- 525.789 Digital Satellite Communications
- 525.791 Microwave Communications Laboratory
- 525.793 Advanced Communication Systems

Undergraduate Transition Courses
Students who lack electrical and computer engineering course prerequisites may be required by their advisor to take one or both of the undergraduate courses below. These courses do not count toward the graduate degree. Note that 525.201 is not a prerequisite of 525.202.

- 525.201 Fundamentals of Electrical and Computer Engineering I
- 525.202 Fundamentals of Electrical and Computer Engineering II

Course Descriptions
See the Computer Science or Electrical and Computer Engineering sections for course descriptions.
Policy Statements

Equal Opportunity/Nondiscriminatory Policy as to Students
The Johns Hopkins University admits students of any race, color, gender, religion, age, national or ethnic origin, disability, marital status or veteran status to all of the rights, privileges, programs, benefits, and activities generally accorded or made available to students at the university. It does not discriminate on the basis of race, color, gender, marital status, pregnancy, ethnicity, national origin, age, disability, religion, sexual orientation, gender identity or expression, veteran status, or other legally protected characteristic in any student program or activity administered by the university, including the administration of its educational policies, admission policies, scholarship and loan programs, and athletic and other university-administered programs or in employment.

Questions regarding Title VI, Title IX, and Section 504 should be referred to the Office of Institutional Equity, 410-516-8075 or (TTY) 410-516-6225.

Policy on the Reserve Officer Training Corps (ROTC)
Defense Department policies regarding sexual orientation in ROTC programs conflict with this university policy. Because ROTC is a valuable component of the university that provides an opportunity for many students to afford a Hopkins education, to train for a career, and to become positive forces in the military, the university, after careful study, has continued its ROTC program but encourages a change in federal policy that brings it into conformity with the university’s policy.

Admissions Policy
Johns Hopkins University admits as regular students only persons who have a high school diploma or its recognized equivalent, or persons who are beyond the age of compulsory school attendance in Maryland.

To be eligible for federal student aid, students who are beyond the age of compulsory attendance but who do not have a high school diploma or its recognized equivalent must meet ability-to-benefit criteria or meet the student eligibility requirements for a student who is home-schooled.

Statement Regarding the Privacy Rights of Students
Notice is hereby given that the Johns Hopkins Engineering for Professionals program complies with the provisions of the Family Educational Rights to Privacy Act of 1974 (P.L. 93-380), as amended, and regulations promulgated thereunder. The Family Educational Rights and Privacy Act (FERPA) affords eligible students, with certain rights with respect to their education records. They are (1) The right to inspect and review the student’s education records within 45 days of the day the university receives a request for access. Students should submit to the Registrar written requests that identify the record(s) they wish to inspect. The Registrar will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the Registrar, the student will be advised of the correct official to whom the request should be addressed. (2) The right to request the amendment of the student’s education records that the student believes are inaccurate or misleading. Students should write the university official responsible for the record they want changed and specify why it is inaccurate or misleading. If the university decides not to amend the records as requested by the student, the student will be notified of the decision and advised of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing. (3) The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosures without consent. Disclosure without consent is granted to school officials with legitimate educational interests. A school official is a person employed by the university in an administrative, supervisory, academic or research, or support staff position (including law enforcement unit personnel and health staff); a person serving on the board of trustees; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility. (4) The right to file a complaint with the U.S. Department of Education concerning alleged failures by the university to comply with the requirements of FERPA.

The name and address of the office that administers FERPA is:

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue S.W.
Washington, DC 20202-4605

Americans With Disabilities Act Policy (ADA)
The Johns Hopkins University does not discriminate on the basis of gender, marital status, pregnancy, race, color, ethnicity, national origin, age, disability, religion, sexual orientation, veteran status or other legally protected characteristic in any student program or activity administered by the university or with regard to admission or employment.

A person with a disability is defined by the Rehabilitation Act of 1973 and by the Americans With Disabilities Act of 1990 as an individual who has a physical or mental impairment that substantially limits one or more major life activities, has a record of such an impairment, or is regarded as having such an impairment. For faculty, staff, and students with disabilities, it is important to provide to the university a comprehensive evaluation of a specific disability from an appropriate qualified diagnostian that identifies the disability, describes the current level of functioning in an academic
or employment setting, and lists recommended accommoda-
tions. The university provides appropriate, necessary, and rea-
sonable accommodations in programs and facilities for those
individuals who are qualified.

The policy is available on the JHU Disability Support
Services website at jhu.edu/disabilityservices. Questions
regarding compliance with the provisions of the Americans
With Disabilities Act of 1990 and Section 504 of the Reha-
bitation Act of 1973 should be referred to Peggy Hayeslip,
director, ADA Compliance and Disability Services, Office of
Institutional Equity, 410-516-8949 or (TTY) 410-516-6225.

Sexual Harassment Prevention and Resolution Policy

Preamble
The Johns Hopkins University is committed to providing its
staff, faculty, and students the opportunity to pursue excel-
lence in their academic and professional endeavors. This can
only exist when each member of our community is assured an
atmosphere of mutual respect, one in which they are judged
solely on criteria related to academic or job performance. The
university is committed to providing such an environment,
free from all forms of harassment and discrimination. Each
member of the community is responsible for fostering mutual
respect, for being familiar with this policy, and for refraining
from conduct that violates this policy.

Sexual harassment, whether between people of different
sexes or the same sex, is defined to include, but is not limited to, unwelcome sexual advances, requests for sexual favors, and other behavior of a sexual nature when:

1. Submission to such conduct is made implicitly or explic-
 tly a term or condition of an individual’s employment or
 participation in an educational program
2. Submission to or rejection of such conduct by an individual
 is used as the basis for personnel decisions or for academic
 evaluation or advancement
3. Such conduct has the purpose or effect of unreasonably
 interfering with an individual’s work or academic perfor-
 mance or creates an intimidating, hostile, or offensive
 working or educational environment

Fundamental to the university’s purpose is the free and open
exchange of ideas. It is not, therefore, the university’s pur-
pose, in promulgating this policy, to inhibit free speech or
the free communication of ideas by members of the academic
community.

Policy
The university will not tolerate sexual harassment, a form of
discrimination, a violation of federal and state law, and a seri-
ous violation of university policy. In accordance with its educa-
tional mission, the university works to educate its community
regarding sexual harassment. The university encourages indi-
viduals to report incidents of sexual harassment and provides
a network of confidential consultants by which individuals can
enforcement officers and for persons acting under the supervision of authorized university personnel, should be addressed to the appropriate chief campus security officer.

Campus Security Act Notice
In accordance with the Crime Awareness and Campus Security Act of 1990 (PL 102-26), as amended, and the regulations promulgated thereunder, the university issues its Annual Security Report that describes the security services at each of the university’s divisions and reports crime statistics for each of the campuses. The report is published online at jhu.edu/~security/annual_report.htm. Copies of the report are available from the university’s Security Department, 14 Shriver Hall, 3400 North Charles Street, Baltimore, Maryland 21218-2689; telephone 410-516-4600.

Photograph and Film Rights Policy
The Johns Hopkins University reserves the right from time to time to film or take photographs of faculty, staff, and students engaged in teaching, research, clinical practices, and other activities, as well as casual and portrait photography or film. These photographs and films will be used in such publications as catalogs, posters, advertisements, recruitment and development materials, as well as on the university’s website, for various videos, or for distribution to local, state, or national media for promotional purposes. Classes will be photographed only with the permission of the faculty member.

Such photographs and film—including digital media—will be kept in the files and archives of The Johns Hopkins University, and remain available for use by the university without time limitations or restrictions. Faculty, students, and staff are made aware by virtue of this policy that the university reserves the right to alter photography and film for creative purposes. Faculty, students, and staff who do not want their photographs used in the manner(s) described in this policy statement should contact the Office of Communications and Public Affairs.

Faculty and students are advised that persons in public places are deemed by law to have no expectation of privacy and are subject to being photographed by third parties. The Johns Hopkins University has no control over the use of photographs or film taken by third parties, including without limitation the news media covering university activities.

Return of Title IV Funds Policy
The Financial Aid Office is required by federal statute to recalculate federal financial aid eligibility for students who withdraw, drop out, are dismissed, or take a leave of absence prior to completing 60 percent of a payment period or term. The federal Title IV financial aid programs must be recalculated in these situations.

If a student leaves the institution prior to completing 60 percent of a payment period or term, the Financial Aid Office recalculates eligibility for Title IV funds. Recalculation is based on the percentage of earned aid using the following federal return of Title IV funds formula:

\[
\text{Percentage of payment period or term completed} = \frac{\text{number of days completed up to the withdrawal date}}{\text{total days in the payment period or term}}
\]

Any break of five days or more is not counted as part of the days in the term. This percentage is also the percentage of earned aid.

Funds are returned to the appropriate federal program based on the percentage of unearned aid using the following formula:

\[
\text{Funds to be returned} = (100\% \text{ of the aid that could be disbursed minus the percentage of earned aid}) \times \text{total amount of aid that could have been disbursed during the payment period or term}.
\]

If a student earned less aid than was disbursed, the institution would be required to return a portion of the funds and the student would be required to return a portion of the funds. Keep in mind that when Title IV funds are returned, the student borrower may owe a debit balance to the institution.

If a student earned more aid than was disbursed to him/her, the institution would owe the student a post-withdrawal disbursement which must be paid within 120 days of the student’s withdrawal.

The institution must return the amount of Title IV funds for which it is responsible no later than 30 days after the date of the determination of the date of the student’s withdrawal.

Refunds are allocated in the following order:
- Unsubsidized Federal Stafford loans
- Subsidized Federal Stafford loans
- Unsubsidized Direct Stafford loans (other than PLUS loans)
- Subsidized Direct Stafford loans
- Federal Perkins loans
- Federal Parent (PLUS) loans
- Direct PLUS loans
- Federal Pell Grants for which a return of funds is required
- Federal supplemental opportunity grants for which a return of funds is required
- Other assistance under Title IV for which a return of funds is required (e.g., LEAP)
Trustees and Administration

Trustees of the University

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pamela P. Flaherty</td>
<td>Chair</td>
</tr>
<tr>
<td>C. Michael Armstrong</td>
<td>ex officio</td>
</tr>
<tr>
<td>Richard S. Frary</td>
<td></td>
</tr>
<tr>
<td>Mark E. Rubenstein</td>
<td></td>
</tr>
<tr>
<td>Marshal L. Salant</td>
<td></td>
</tr>
<tr>
<td>Robert A. Seder</td>
<td></td>
</tr>
<tr>
<td>Donald J. Shepard</td>
<td></td>
</tr>
<tr>
<td>Rajendra Singh</td>
<td></td>
</tr>
<tr>
<td>Raymond W. Snow</td>
<td>ex officio</td>
</tr>
<tr>
<td>Adena W. Testa</td>
<td></td>
</tr>
<tr>
<td>Selwyn M. Vickers</td>
<td></td>
</tr>
<tr>
<td>William F. Ward Jr.</td>
<td></td>
</tr>
<tr>
<td>James L. Winter</td>
<td></td>
</tr>
<tr>
<td>Shirley S. L. Yang</td>
<td></td>
</tr>
<tr>
<td>Brian C. Rogers</td>
<td></td>
</tr>
<tr>
<td>David M. Rubenstein</td>
<td></td>
</tr>
<tr>
<td>Robert J. Abernethy</td>
<td></td>
</tr>
<tr>
<td>Leonard Abramson</td>
<td></td>
</tr>
<tr>
<td>Peter G. Angelos</td>
<td></td>
</tr>
<tr>
<td>Norman R. Augustine</td>
<td></td>
</tr>
<tr>
<td>H. Furlong Baldwin</td>
<td></td>
</tr>
<tr>
<td>Jeremiah A. Barondess</td>
<td></td>
</tr>
<tr>
<td>Ernest A. Bates</td>
<td></td>
</tr>
<tr>
<td>David H. Bernstein</td>
<td></td>
</tr>
<tr>
<td>Aurelia G. Bolton</td>
<td></td>
</tr>
<tr>
<td>Randolph W. Bromery</td>
<td></td>
</tr>
<tr>
<td>Constance R. Caplan</td>
<td></td>
</tr>
<tr>
<td>William P. Carey</td>
<td></td>
</tr>
<tr>
<td>A. James Clark</td>
<td></td>
</tr>
<tr>
<td>Victor J. Dankis</td>
<td></td>
</tr>
<tr>
<td>Edward K. Dunn Jr.</td>
<td></td>
</tr>
<tr>
<td>Manuel Dupkin II</td>
<td></td>
</tr>
<tr>
<td>James A. Flick Jr.</td>
<td></td>
</tr>
<tr>
<td>Gottlieb C. Friesinger II</td>
<td></td>
</tr>
<tr>
<td>Robert D. H. Harvey</td>
<td></td>
</tr>
<tr>
<td>Rafael Hernandez-Colon</td>
<td></td>
</tr>
<tr>
<td>F. Pierce Linaweaver</td>
<td></td>
</tr>
<tr>
<td>Raymond A. Mason</td>
<td></td>
</tr>
<tr>
<td>Harvey M. Meyerhoff</td>
<td></td>
</tr>
<tr>
<td>Charles D. Miller</td>
<td></td>
</tr>
<tr>
<td>Milton H. Miller</td>
<td></td>
</tr>
<tr>
<td>Ralph S. O’Connor</td>
<td></td>
</tr>
<tr>
<td>Morris W. Offit</td>
<td></td>
</tr>
<tr>
<td>George G. Radcliffe</td>
<td></td>
</tr>
<tr>
<td>John F. Ruffle</td>
<td></td>
</tr>
<tr>
<td>Arthur Sarnoff</td>
<td></td>
</tr>
<tr>
<td>Frank Savage</td>
<td></td>
</tr>
<tr>
<td>Wayne N. Schelle</td>
<td></td>
</tr>
<tr>
<td>Herschel L. Seder</td>
<td></td>
</tr>
<tr>
<td>Huntington Sheldon</td>
<td></td>
</tr>
<tr>
<td>R. Champlin Sheridan Jr.</td>
<td></td>
</tr>
<tr>
<td>Wendell A. Smith</td>
<td></td>
</tr>
<tr>
<td>Helmut Sonnenfeldt</td>
<td></td>
</tr>
<tr>
<td>Shale D. Stiller</td>
<td></td>
</tr>
<tr>
<td>Morris Tanenbaum</td>
<td></td>
</tr>
<tr>
<td>Edward G. Uhl</td>
<td></td>
</tr>
<tr>
<td>Calman J. Zamoiski Jr.</td>
<td></td>
</tr>
</tbody>
</table>

Trustees Emeriti

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert J. Abernethy</td>
<td></td>
</tr>
<tr>
<td>Leonard Abramson</td>
<td></td>
</tr>
<tr>
<td>Peter G. Angelos</td>
<td></td>
</tr>
<tr>
<td>Norman R. Augustine</td>
<td></td>
</tr>
<tr>
<td>H. Furlong Baldwin</td>
<td></td>
</tr>
<tr>
<td>Jeremiah A. Barondess</td>
<td></td>
</tr>
<tr>
<td>Ernest A. Bates</td>
<td></td>
</tr>
<tr>
<td>David H. Bernstein</td>
<td></td>
</tr>
<tr>
<td>Aurelia G. Bolton</td>
<td></td>
</tr>
<tr>
<td>Randolph W. Bromery</td>
<td></td>
</tr>
<tr>
<td>Constance R. Caplan</td>
<td></td>
</tr>
<tr>
<td>William P. Carey</td>
<td></td>
</tr>
<tr>
<td>A. James Clark</td>
<td></td>
</tr>
<tr>
<td>Victor J. Dankis</td>
<td></td>
</tr>
<tr>
<td>Edward K. Dunn Jr.</td>
<td></td>
</tr>
<tr>
<td>Manuel Dupkin II</td>
<td></td>
</tr>
<tr>
<td>James A. Flick Jr.</td>
<td></td>
</tr>
<tr>
<td>Gottlieb C. Friesinger II</td>
<td></td>
</tr>
<tr>
<td>Robert D. H. Harvey</td>
<td></td>
</tr>
<tr>
<td>Rafael Hernandez-Colon</td>
<td></td>
</tr>
<tr>
<td>F. Pierce Linaweaver</td>
<td></td>
</tr>
<tr>
<td>Raymond A. Mason</td>
<td></td>
</tr>
<tr>
<td>Harvey M. Meyerhoff</td>
<td></td>
</tr>
<tr>
<td>Charles D. Miller</td>
<td></td>
</tr>
<tr>
<td>Milton H. Miller</td>
<td></td>
</tr>
<tr>
<td>Ralph S. O’Connor</td>
<td></td>
</tr>
<tr>
<td>Morris W. Offit</td>
<td></td>
</tr>
<tr>
<td>George G. Radcliffe</td>
<td></td>
</tr>
<tr>
<td>John F. Ruffle</td>
<td></td>
</tr>
<tr>
<td>Arthur Sarnoff</td>
<td></td>
</tr>
<tr>
<td>Frank Savage</td>
<td></td>
</tr>
<tr>
<td>Wayne N. Schelle</td>
<td></td>
</tr>
<tr>
<td>Herschel L. Seder</td>
<td></td>
</tr>
<tr>
<td>Huntington Sheldon</td>
<td></td>
</tr>
<tr>
<td>R. Champlin Sheridan Jr.</td>
<td></td>
</tr>
<tr>
<td>Wendell A. Smith</td>
<td></td>
</tr>
<tr>
<td>Helmut Sonnenfeldt</td>
<td></td>
</tr>
<tr>
<td>Shale D. Stiller</td>
<td></td>
</tr>
<tr>
<td>Morris Tanenbaum</td>
<td></td>
</tr>
<tr>
<td>Edward G. Uhl</td>
<td></td>
</tr>
<tr>
<td>Calman J. Zamoiski Jr.</td>
<td></td>
</tr>
</tbody>
</table>
Principal Administrative Officers and Deans

Ronald J. Daniels
President of the University

Lloyd B. Minor
Provost and Senior Vice President for Academic Affairs

James T. McGill Jr.
Senior Vice President for Finance and Administration

Edward D. Miller
CEO of Johns Hopkins Medicine, Vice President for Medicine, and Dean of the Medical Faculty

Stephen S. Dunham
Vice President and General Counsel

Michael Strine
Vice President for Finance and Treasurer

Michael C. Eicher
Vice President for Development and Alumni Relations

Thomas S. Lewis
Vice President for Government, Community, and Public Affairs

Charlene Moore Hayes
Vice President for Human Resources

Paula P. Burger
Vice Provost

Michela Gallagher
Vice Provost for Academic Affairs

Edgar E. Roulhac
Vice Provost for Academic Services

Jonathan Bagger
Vice Provost for Graduate and Postdoctoral Programs and Special Projects

Stephanie L. Reel
Chief Information Officer and Vice Provost for Information Technology

Ray Gillian
Vice Provost for Institutional Equity

Pamela Cranston
Vice Provost for International Programs

Scott L. Zeger
Vice Provost for Research

Jerome D. Schnydman
Executive Assistant to the President and Secretary of the Board of Trustees

Gregory S. Oler
Controller

Kathryn J. Crecelius
Chief Investment Officer

Adam F. Falk
Dean of the Krieger School of Arts and Sciences

Nicholas P. Jones
Dean of the Whiting School of Engineering

Michael J. Klag
Dean of the Bloomberg School of Public Health

Yash P. Gupta
Dean of the Carey Business School

Martha N. Hill
Dean of the School of Nursing

Jessica P. Einhorn
Dean of the Nitze School of Advanced International Studies

Mariale Hardiman
Interim Dean of the School of Education

Jeffrey Sharkey
Director of the Peabody Institute

Richard T. Roca
Director of the Applied Physics Laboratory

Winston Tabb
Dean of University Libraries and Museums

Vice Provost for the Arts
EP Advisory Council

William G. Irby, Council Chair
Division Vice President
One System Programs
AAI Corporation

Nelson Baker
Vice Provost for Distance Learning & Professional Education
Georgia Institute of Technology

Edward Borbely
Director, Center for Professional Development
College of Engineering
University of Michigan

Rob Cardwell
Vice President
Development
Red Hat, Inc.

John Fischer
Director of Laboratory Programs
U.S. Navy OSD/DDR&E

Chris Horne-Jahrling
Vice President
Engineering, Technology and Operations
Lockheed Martin Transportation & Security Solutions

David W. Jourdan
President
Nauticos LLC

Robyn Kravit
CEO
Tethys Research LLC

Kelly Miller
NSA/CSS Chief Systems Engineer and Cryptologic Community Architect

Anne Schelle
Vice President
Tasman Technologies

EP Advisory Council Adjunct Members
Sarah Steinberg
Senior Associate Dean, Advanced Academic Programs
Krieger School of Arts and Sciences
Johns Hopkins University

Elizabeth K. Mayotte
Associate Dean
School of Education
Johns Hopkins University

EP Advisory Council Ex Officio Members
Allan W. Bjerkaas
Associate Dean, Engineering for Professionals
Whiting School of Engineering
Johns Hopkins University

Nicholas P. Jones
Benjamin T. Rome Dean
Whiting School of Engineering
Johns Hopkins University

Edward Scheinerman
Vice Dean for Education
Whiting School of Engineering
Johns Hopkins University

Robert Spiller
Associate Dean
Development & Alumni Relations
Whiting School of Engineering
Johns Hopkins University

John Sommerer
Acting Director of Science and Technology
Applied Physics Laboratory
Johns Hopkins University
Advisory Board for Environmental Engineering, Science, and Management

William Anderson, P.E., DEE
Co-Chair
Executive Director, Council of Engineering Scientific Specialty Boards

George Frigon
Co-Chair
President, Newfields

Bob Andryszak
Associate, RK and K Engineers

Matthew Beatty
Vice President and Operations Manager
Weston Solutions, Inc.

Robin Cantor
Director, Navigant Consulting

James Carr
Dean, EPA Institute
USEPA Headquarters

Barbara Cook, P.E.
President, GeoEnvironmental Group

Robin Davidow
Executive Director
Northeast Maryland Waste Disposal Authority

Neil Davis
Director of Operations
Emerging Technology Center

Greg Deaver, P.E.
Vice President, URS Corporation

Stanislaw Gembicki Jr., P.E.
Chief, Engineering Division, U.S. Army Corps of Engineers

Michael Gresalfi
Special Assistant
Operations Support Directorate
Domestic Nuclear Detection Office

Gregory Johnson, P.E.
Director of Resource Management
U.S. Army Corps of Engineers

Joseph Kavanagh, P.E., DEE
Vice President, JMT Engineering

Kurt Krammer, REM
Environmental Manager
FMC Corporation

John Kumm
Senior Project Manager
E.A. Engineering Science and Technology

John Lehr
Director, Office of Small Sites Closure
Office of Environmental Management
U.S. Department of Energy

Marty Martinez Jr.
Director, Nuclear Programs
Energetics, Inc.

Timothy McNamara
Deputy to the Garrison Commander
U.S. Army
Garrison Aberdeen Proving Ground

Zohreh Movahed
Safety Manager
Washington Suburban Sanitary Commission

Warren Mullins
Vice President, Business Development
Battelle Eastern Science and Technology Center

Robert Murtha
President, Murtech

Patricia Mutschler
Executive Secretary
Committee on the Marine Transportation System

Lawrence Pencak
Executive Director
American Academy of Environmental Engineers

Gary Rahl
Vice President
Booz Allen Hamilton, Inc.

Kurt W. Riegel
Part-Time Faculty
Johns Hopkins University

Edyth Schoenrich
Senior Vice President/Chief of Environmental Engineering Division
KCI Technologies

Bob Summers
Deputy Secretary
Maryland Department of the Environment

Gary Walters
Principal in Charge
Environmental Resources Management

Ping. Wan, C.C.M.
Chief Environmental Engineer
Environmental Services Manager
Bechtel Power Corporation

Susan Wierram
Executive Director
Mid-Atlantic Regional Management Association

Stacy Zimmerman
Project Manager
Tidewater, Inc.
Faculty

Whiting School of Engineering

Engineering for Professionals

Richard C. Anderson
Senior Professional Staff
JHU Applied Physics Laboratory

Thomas Francis Anderson
Director
Wire-Tap, Inc.

Pamela Ann Ansalvish
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Mehran Armand
Principal Professional Staff
JHU Applied Physics Laboratory

Robert S. Armiger
Associate Professional Staff
JHU Applied Physics Laboratory

Harish Arora
Director, Water Treatment
Narasimhan Consulting Services, Inc.

Dilipkumar Asthagiri
Assistant Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Ra’id S. Awadallah
Principal Professional Staff
JHU Applied Physics Laboratory

Amit Banerjee
Principal Professional Staff
JHU Applied Physics Laboratory

Isaac N. Bankman
Principal Professional Staff
JHU Applied Physics Laboratory

Frank T. Barranco
Senior Hydrogeologist/Project Manager
EA Engineering, Science, and Technology

Joseph M. Barton
Vice President
Trideum Corporation

Bradley O. Bates
Professor, Program Management
Defense Acquisition University

Chris Baumgart
Senior Professional Staff
JHU Applied Physics Laboratory

Pierre-Louis Bazin
Instructor
JHU School of Medicine

Faculty
Timothy P. Barrett
Senior Professional Staff
JHU Applied Physics Laboratory

Michael R. Berman
Senior Scientist, Office of Combination Products
U.S. Food and Drug Administration

Joshua I. Bernstein
Director, Integrated Mission Capabilities
Northrop Grumman Electronic Systems

Nicholas D. Beser
Principal Professional Staff
JHU Applied Physics Laboratory

Michael Betenbaugh
Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Michael Bevan
Associate Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Steven M. Biemer
Principal Professional Staff
JHU Applied Physics Laboratory

John D. Bigelow
Senior Professional Staff
JHU Applied Physics Laboratory

Allan W. Bjerkaas
Associate Dean, Engineering for Professionals
JHU Whiting School of Engineering

Richard W. Blank
Senior Professional Staff
JHU Applied Physics Laboratory

Greg W. Blodgett
Senior Staff Consultant
Verizon

Barry Alan Bodt
Mathematical Statistician
U.S. Army Research Laboratory

Bonnie Kranzer Boland
Principal
Bonnie Kranzer, Ph.D., AICP, Consulting Services

John J. Boland
Professor Emeritus, Geography and Environmental Engineering
JHU Whiting School of Engineering

John Edward Boon, Jr.
Operations Research Analyst
RAND

Bradley G. Boone
Principal Professional Staff
JHU Applied Physics Laboratory

Paul W. Boudra
Senior Professional Staff
JHU Applied Physics Laboratory

Raouf Nakhla Boules
Professor and Department Chairperson
Towson University

Allan Bowers
Senior Engineering Manager
Lockheed Martin Corporation

Michael P. Boyle
Senior Professional Staff
JHU Applied Physics Laboratory

Sherri Braxton-Lieber
Director, National Capital Region Programs
Cubic Applications, Inc.

Robert Britcher
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

William A. Broadus III
Professor of Systems Engineering and Program Management
Defense Acquisition University
U.S. Department of Defense

Emily Bird Broderick
Senior Professional Staff
JHU Applied Physics Laboratory

Clarence David Brown
Engineering Consultant
The MITRE Corporation and Institute for Defense Analyses

Grace S. Brush
Professor, Geography and Environmental Engineering
JHU Whiting School of Engineering

Wayne A. Bryden
Vice President, Advanced Research
ICx Technologies

Thomas “Buck” Howard Buchanan
Director, Business Development
Raytheon Solidsys

Jack L. Burbank
Senior Professional Staff
JHU Applied Physics Laboratory

John Burkhardt
Associate Professor
U.S. Naval Academy

Phillipe M. Burlina
Principal Professional Staff
JHU Applied Physics Laboratory

Steve Butcher
Software Engineer
Mercury Analytics, LLC
Faculty

Michael Akylas Caloyannides
Associate Professional Staff
JHU Applied Physics Laboratory

Charles B. Cameron
Chair, Electrical and Computer Engineering Department
U.S. Naval Academy

Robert C. Cammerata
Professor, Materials Science and Engineering
JHU Whiting School of Engineering

Mark R. Campbell
Senior Professional Staff
JHU Applied Physics Laboratory

Henry E. Cardwell
Research Staff
U.S. Army Corps of Engineers

John “Jack” C. Carmody
Senior Scientist
LMCO

Amy Houle Caruso
Deputy Program Manager
U.S. Naval Air Systems Command

Beryl Castello
Lecturer, Applied Mathematics and Science
JHU Whiting School of Engineering

Yaakov Chaikin
Senior Enterprise Architect
Enviesta, LLC

Harry K. Charles Jr.
Principal Professional Staff
JHU Applied Physics Laboratory

Jeffrey S. Chavis
Senior Professional Staff
JHU Applied Physics Laboratory

Matthew Alexander Cherry
Senior Software Engineer

Priya Cherry
Technical Manager
Oracle Corporation

Philip W. Ching
President
Aplix Research, Inc.

Kiran Chitrargi
Systems Architect
Lockheed Martin Corporation

Eleanor Boyle Chlan
Senior Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Thomas R. Clark
Principal Professional Staff
JHU Applied Physics Laboratory

Teresa A. Colella
Senior Professional Staff
JHU Applied Physics Laboratory

Michael Patrick Collins
Chief Scientist
RedJack

James Connelly
Senior Professional Staff
JHU Applied Physics Laboratory

James Edward Coolahan
Principal Professional Staff
JHU Applied Physics Laboratory

Edward H. Cormier
Program Manager
U.S. Department of Treasury

Thomas Corrigan
Senior Professional Staff
JHU Applied Physics Laboratory

James J. Costabile
Principal Engineer
RABA Technologies

Chuck Crossett
Principal Professional Staff
JHU Applied Physics Laboratory

W. B. Max Crownover
Senior Professional Staff
JHU Applied Physics Laboratory

Michael Curley
President
Environmental Finance LLC

Protagorus N. Cutchis
Principal Professional Staff
JHU Applied Physics Laboratory

Roger Dabbah
Principal Consultant
Tri-Intersect Solutions

Dean Daghib
Senior Principal
SRA International, Inc.

Judith S. Dahmann
Senior Principal Systems Engineer
The MITRE Corporation

Lise Dahuron
Lecturer, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering
Robert Dalrymple
Professor, Civil Engineering
JHU Whiting School of Engineering

James M. D’Archangelo
Professor
U.S. Naval Academy

Edward H. Darlington
Principal Professional Staff
JHU Applied Physics Laboratory

Christian Davies-Venn
Vice President
PEER Consultants, P.C.

Cleon E. Davis
Senior Professional Staff
JHU Applied Physics Laboratory

Dale E. Dawson
Consulting Engineer
Northrop Grumman Corporation

Richard M. Day
Senior Professional Staff
JHU Applied Physics Laboratory

Antonio De Simone
Senior Professional Staff
JHU Applied Physics Laboratory

Ryan M. Deacon
Senior Professional Staff
JHU Applied Physics Laboratory

Christopher C. DeBoy
Principal Professional Staff
JHU Applied Physics Laboratory

Mohammad M. Dehghani
Senior Professional Staff
JHU Applied Physics Laboratory

Daniel DeMenthon
Senior Professional Staff
JHU Applied Physics Laboratory

Michael J. Dellarco
Environmental Health Scientist
NIH/National Institute of Child Health and Human Development

Joseph M. Demasco
President
Decision Support Consultants, Inc.

Jason Dever
Systems Engineer
Lockheed Martin

William S. Devereux
Principal Professional Staff
JHU Applied Physics Laboratory

Carol A. Dickson
Director, Training and Development
Spirent Communications

Anton Dimitriev
Director, Spine Research Center
Walter Reed Army Medical Center

G. Daniel Dockery
Principal Professional Staff
JHU Applied Physics Laboratory

Scott E. Donaldson
Senior Vice President
SAIC

Marc Donohue
Associate Dean for Research
JHU Whiting School of Engineering

Kathleen K. Dougan
Division Chief, Engineering
U.S. Department of Defense

German Drazer
Assistant Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Liza Wilson Durant
President
Cambrian Corporation

Harry Eaton
Principal Professional Staff
JHU Applied Physics Laboratory

Clinton L. Edwards
Senior Professional Staff
JHU Applied Physics Laboratory

M. Lee Edwards
Independent Consultant

Joseph Hugh Ellis
Professor, Geography and Environmental Engineering
JHU Whiting School of Engineering

Jonah D. Erlebacher
Assistant Professor, Materials Science and Engineering
JHU Whiting School of Engineering

Maria Ermolaeva
Director
Caricature Software Inc.

Robert B. Evans
Principal Professional Staff
JHU Applied Physics Laboratory

Joseph A. Everett
Senior Electronics Engineer
U.S. Department of Defense
Faculty

Patrick O. Ezigbo
Senior Project Manager
Geico Insurance

Raul Fainchtein
Senior Professional Staff
JHU Applied Physics Laboratory

Ronald S. Farris
Principal Professional Staff
JHU Applied Physics Laboratory

Charles L. Farthing
Senior Professional Staff
JHU Applied Physics Laboratory

Chris Fazi
Senior RF EE Program Manager
U.S. Army Research Lab

Leonid Felikson
Professional Staff
Freddie Mac

Tatyana Felikson
Senior Technical Analyst
Freddie Mac

Doug Ferguson
Advisory Engineer
Northrop Grumman Corporation

Charles R. Fidler
Chief Systems Engineer
ManTech

Robert K. Finlayson
Senior Professional Staff
JHU Applied Physics Laboratory

Michael J. Fitch
Senior Professional Staff
JHU Applied Physics Laboratory

David Alan Flanigan
Senior Professional Staff
JHU Applied Physics Laboratory

Mark Alan Fleischer
Patent Examiner
U.S. Patent and Trademark Office

Laurel L. Gutierrez
Senior Engineering Fellow
Raytheon Company

Joelle Frechette
Assistant Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

David Freund
Senior Professional Staff
JHU Applied Physics Laboratory

Robert Lee Fry
Combat System Engineer
System Engineering Group, Inc.

Richard E. Gasparovic
Principal Professional Staff
JHU Applied Physics Laboratory

Louis R. Gieszl
Senior Professional Staff (ret.)
JHU Applied Physics Laboratory

Dr. Dan Gilbert
Subcontract Manager
Northrop Grumman Corporation

An Goffin
Lecturer, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Andrew Goldfinger
Principal Professional Staff
JHU Applied Physics Laboratory

David Gracias
Associate Professor, Chemical and Biomedical Engineering
JHU Whiting School of Engineering

Jeffrey Gray
Associate Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Peter W. Green
Senior Professional Staff
JHU Applied Physics Laboratory

Robert S. Grossman
Principal Professional Staff
JHU Applied Physics Laboratory

Seth David Guikema
Assistant Professor, Geography and Environmental Engineering
JHU Whiting School of Engineering

Thomas Clay Gump
Lead Network Engineer
University of Maryland

Thomas C. Gump
Lead Network Engineer
University of Maryland

Laurel L. Gutierrez
Senior Engineering Fellow
Raytheon Company
Faculty

Eileen Haase
Lecturer, Biomedical Engineering
JHU Whiting School of Engineering

Joseph William Haber
Senior Professional Staff
JHU Applied Physics Laboratory

Marty Hall
President
coreservlets.com

Roger Hammons Jr.
Principal Professional Staff
JHU Applied Physics Laboratory

Jerry Raymond Hampton
Principal Professional Staff
JHU Applied Physics Laboratory

Timothy B. Hanson
Engineering Consultant
OPNET Technologies

Lorenz J. Happel
Principal Professional Staff
JHU Applied Physics Laboratory

Salman Haq
Project Manager
U.S. Nuclear Regulatory Commission

Peter J. Harmatuk
Senior Systems Engineer
Enterprise Information Services, Inc.

Stuart D. Harshbarger
Principal Professional Staff
JHU Applied Physics Laboratory

Alton D. Harris III
Engineer
U.S. Department of Energy

S. Edward Hawkins III
Principal Professional Staff
JHU Applied Physics Laboratory

William M. Healy
Group Leader
National Institute of Standards and Technology

Erin K. Hein
Chief Engineer
U.S. Naval Air Systems Command

David Heinbuch
Senior Professional Staff
JHU Applied Physics Laboratory

Timothy Robert Henderson
Managing Partner
Rich & Henderson, P.C.

Stephen Hendricks
Supervisory Engineer
U.S. Naval Air Systems Command

Matthew Haven Henry
Senior Professional Staff
JHU Applied Physics Laboratory

Bryan Herdlick
Senior Professional Staff
JHU Applied Physics Laboratory

Cila Herman
Professor, Mechanical Engineering
JHU Whiting School of Engineering

David Earl Hess
Mechanical Engineer
U.S. Naval Surface Warfare Center

William B. Hilgartner
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Stacy D. Hill
Senior Professional Staff
JHU Applied Physics Laboratory

Tarisa E. Holbrook
Senior Program Manager
Praxis Engineering Technologies

Brian L. Holub
Principal Professional Staff
JHU Applied Physics Laboratory

Mary M. Hopkins
Senior Project Engineer
The Aerospace Corporation

Christine Horne-Jahrling
Vice President, Engineering, Technology, and Operations
ISGS—Civil
Lockheed Martin Corporation

Ramsey Hourani
Senior Professional Staff
JHU Applied Physics Laboratory

Jeff Houser
Team Leader/Unattended Ground Sensors
U.S. Army Research Laboratory

Steven Hsiao
Professor, Neuroscience
JHU School of Medicine

Harry T. Hsu
Principal Network Engineer (ret.)
Unisys Corporation

Patrick J. Hudson
President
Moment Engineering, Inc.

Patrick J. Hudson
President
Moment Engineering, Inc.
Faculty

Todd C. Hufnagel
Professor, Materials Science and Engineering
JHU Whiting School of Engineering

James Hughes
Principal Professional Staff
JHU Applied Physics Laboratory

H. M. James Hung
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Lawrence A. Husick
Co-Director, Program on Innovation and Senior Fellow
Foreign Policy Research Institute

Pablo A. Iglesias
Professor, Electrical and Computer Engineering
JHU Whiting School of Engineering

Takeru Igusa
Professor, Civil Engineering
JHU Whiting School of Engineering

Elisabeth A. Immer
Senior Professional Staff
JHU Applied Physics Laboratory

Robert W. Ivester
Mechanical Engineer
National Institute of Standards and Technology

Daniel G. Jablonski
Principal Professional Staff
JHU Applied Physics Laboratory

Mia Zachary Jackson
Senior Professional Staff
JHU Applied Physics Laboratory

Bryan Jacobs
Principal Professional Staff
JHU Applied Physics Laboratory

Brian K. Jennison
Principal Professional Staff
JHU Applied Physics Laboratory

Anil John
Senior Professional Staff
JHU Applied Physics Laboratory

Newton E. Johnson
Principal Engineering Fellow
Raytheon Company

Thomas E. Johnson
Senior Professional Staff
JHU Applied Physics Laboratory

Michael C. Jones
Senior Professional Staff
JHU Applied Physics Laboratory

Peter M. Joyce
Associate Professor
Community College of Baltimore County at Catonsville

Radford Ray Juang
Associate Professional Staff
JHU Applied Physics Laboratory

George E. Kalb
Consulting Engineer
Northrop Grumman Corporation

Jed Conrad Kane
Lead Systems Engineer
The MITRE Corporation

Brian L. Kantsiper
Senior Professional Staff
JHU Applied Physics Laboratory

Dimosthenis Katsis
President
Athena Energy Corp.

Joseph Katz
Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Roger Kaul
Supervisory Electronics Engineer (ret.)
U.S. Army Research Laboratory

John F. Keane
Principal Professional Staff
Applied Physics Laboratory

Albert Creghton Kinney
Principal Scientist
Northrop Grumman Information Systems

Iyengar Kishnan
Consultant
Booz Allen Hamilton

Peter F. Klauss
Director of Engineering, Naval Weapons
Raytheon Company

Matthew I. Koch
Senior Professional Staff
JHU Applied Physics Laboratory

Konstantinos Konstantopoulos
Professor and Chair, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

David Krueger
U.S. Federal Team Chief Engineer
IBM

Robert E. Krzystan
Senior Advisory Engineer
Northrop Grumman Corporation
Satyendra Kumar
Lead Research Engineer
StreamAge, Inc.

Prasun K. Kundu
Research Associate Professor
Joint Center for Earth Systems Technology
University of Maryland Baltimore County

Dar-Ning Kung
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

David Y. Kusnierkiewicz
Principal Professional Staff
JHU Applied Physics Laboratory

Jay Lamb
Principal Professional Staff
JHU Applied Physics Laboratory

Sam O. Lane
Senior Principal Information Systems Engineer
The MITRE Corporation

Nicholas J. Langhauser
Principal Professional Staff
JHU Applied Physics Laboratory

Mitch M. Lasat
Environmental Scientist
U.S. Environmental Protection Agency

Mary D. Lasky
Principal Professional Staff
JHU Applied Physics Laboratory

Matthew Lear
Senior Professional Staff
JHU Applied Physics Laboratory

Richard B. Lee
Principal RF Engineer
Northrop Grumman Corporation

Paul Graham Leiman
Principal
KeyWitness Consulting

Andrew M. Lennon
Principal Professional Staff
JHU Applied Physics Laboratory

Jeffrey Lesho
Principal Professional Staff
JHU Applied Physics Laboratory

Andre Levchenko
Associate Professor, Biomedical Engineering
JHU Whiting School of Engineering

Jeffrey S. Levin
Principal Professional Staff
JHU Applied Physics Laboratory

William Lew
Director
Deloitte & Touche

Anastasios Liakos
Associate Professor, Mathematics
U.S. Naval Academy

William G. Liggett
Principal Professional Staff
JHU Applied Physics Laboratory

Ralph G. Lightner
Consultant

Jon Lindberg
Principal Professional Staff
JHU Applied Physics Laboratory

Simon Y. Liu
Director, Information Systems
National Library of Medicine

Thomas H. Llanso
Senior Professional Staff
JHU Applied Physics Laboratory

Tom Longstaff
Senior Professional Staff
JHU Applied Physics Laboratory

Fred Luckau
Deputy Director, System Design and Performance
Raytheon Company

Ronald R. Luman
Principal Professional Staff
JHU Applied Physics Laboratory

En Ma
Professor, Materials Science and Engineering
JHU Whiting School of Engineering

Horace Malcom
Principal Professional Staff
JHU Applied Physics Laboratory

Hashmat R. Malik
President
Software Productivity Strategists, Inc.

Sanjeev R. Malushte
Bechtel Fellow and Senior Principal Engineer
Bechtel Power Corporation

Jay Anthony Marble
Research Engineer
Night Vision Electronic Sensors Directorate

Maury I. Marks
Advisory Engineer
Northrop Grumman Corporation
Mark Noel Martin
Principal Professional Staff
JHU Applied Physics Laboratory

Ralph M. May
Computer Systems Consultant

Russell L. McCall
Principal Professional Staff
JHU Applied Physics Laboratory

Kevin McClaning
U.S. Department of Defense

Richard A. McDonnell
Product Line Chief Engineer
Raytheon Company

Randy L. McGuire
Program Manager, Aviation Safety Analysis
The MITRE Corporation

Eugene D. McHugh
Program Manager
RedBlack Communications

Michael P. McLoughlin
Principal Professional Staff
JHU Applied Physics Laboratory

Paul McNamee
Senior Professional Staff
JHU Applied Physics Laboratory

Allan McQuarrie
Senior Professional Staff
JHU Applied Physics Laboratory

Richard Courtney Meitzler
Principal Professional Staff
JHU Applied Physics Laboratory

Will Menner
Principal Professional Staff
JHU Applied Physics Laboratory

Rick Metzer
Lecturer
JHU Whiting School of Engineering

John Miklos
Senior Programmer (ret.)
Lockheed Martin Corporation

Timothy Miller
Principal Professional Staff
JHU Applied Physics Laboratory

Amitabh Mishra
Assistant Research Professor, Computer Science
JHU Whiting School of Engineering

Kimberlee M. Mitchel
Senior Executive (ret.)
U.S. Social Security Administration

Mistra Moazami
Senior Professional Staff
JHU Applied Physics Laboratory

Linda J. Moniz
Senior Professional Staff
JHU Applied Physics Laboratory

Jaime Montemayor
Senior Professional Staff
JHU Applied Physics Laboratory

Matthew Montoya
Principal Professional Staff
JHU Applied Physics Laboratory

Victoria V. W. Mosley
Ph.D. Candidate, Information Technology

James T. (Ted) Mueller
Principal Professional Staff
JHU Applied Physics Laboratory

Patricia K. Murphy
Principal Professional Staff
JHU Applied Physics Laboratory

Eric Naber
Associate Professional Staff
JHU Applied Physics Laboratory

Barin N. Nag
Professor, E-Business and Technology Management
Towson University

Amir-Homayoon Najmi
Senior Professional Staff
JHU Applied Physics Laboratory

Nasser Mohammadi Nasrabadi
Senior Research Scientist
U.S. Army Research Laboratory

Aaron B. Navarro
Assistant Director for Program Development
National Library of Medicine

Kerrin S. Neace
Senior Professional Staff
JHU Applied Physics Laboratory

David W. Nesbitt
Principal Software Engineer
MapQuest / America OnLine

Christine Leigh Nickel
Lecturer, Institute for Policy Studies
JHU Whiting School of Engineering

Richard Nieporent
Senior Principal Systems Engineer
The MITRE Corporation
John C. Noble
Principal Professional Staff
JHU Applied Physics Laboratory

John Charles O’Connor
Chief of Academics
U.S. Naval Test Pilot School

Raymond G. Ohl IV
Optical Engineer
NASA Goddard Space Flight Center

Albert Olagbemiro
Associate
Booz Allen Hamilton

Jeffrey G. Osborn
Senior Professional Staff
JHU Applied Physics Laboratory

Marc Ostermeier
Associate Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Michael E. Pafford
Senior Professional Staff
JHU Applied Physics Laboratory

Neil Francis Palumbo
Principal Professional Staff
JHU Applied Physics Laboratory

Anna Panchenko
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Carroll Thompson Pardoe
Principal Professional Staff (ret.)
JHU Applied Physics Laboratory

Austin Parker
Staff Researcher, Center for Computing Sciences
Institute for Defense Analysis

Barton L. Paulhamus
Senior Professional Staff
JHU Applied Physics Laboratory

Wayne J. Pavalko
Principal Professional Staff
JHU Applied Physics Laboratory

Moustapha N. Pemy
Assistant Professor, Mathematics
Towson University

John E. Penn
Electrical Engineer
U.S. Army Research Center

Catherine J. Pennington
Associate Executive Director
The MITRE Corporation

Ronald E. Perison
Senior Professional Staff
JHU Applied Physics Laboratory

Dzung L. Pham
Assistant Professor, Neuroradiology
JHU School of Medicine

Albert Charles Piccirillo
Research Staff Member
Institute for Defense Analyses

Harold L. Pierson
Consultant

John Piorkowski
Principal Professional Staff
JHU Applied Physics Laboratory

Vincent L. Pisacane
Professor
U.S. Naval Academy

Harold J. Podell
Assistant Director—IT Security
U.S. Government Accountability Office

Theodore O. Poehler
Research Professor, Electrical and Computer Engineering
JHU Whiting School of Engineering

Thomas P. Pole
Chief Systems Architect
Harris Corporation

David Larsen Porter
Principal Professional Staff
JHU Applied Physics Laboratory

Richard S. Potember
Principal Professional Staff
JHU Applied Physics Laboratory

Kenneth A. Potocki
Principal Professional Staff
JHU Applied Physics Laboratory

Christopher L. Powers
Principal Professional Staff
JHU Applied Physics Laboratory

Sai Prakash
Lecturer, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Teresa Przytycka
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Alan J. Pue
Principal Professional Staff
JHU Applied Physics Laboratory
Jeff P. Raffensperger
Hydrologist
U.S. Geological Survey

Francis R. Rahl
Manager of Systems Assessments
Northrop Grumman Corporation

Jessica Ramella-Roman
Assistant Professor, Biomedical Engineering
The Catholic University of America

K. T. Ramesh
Professor, Mechanical Engineering
JHU Whiting School of Engineering

Mohamed Tamer Refaei
Senior Information Security Scientist
The MITRE Corporation

Carl O. Reitz
Assistant Program Executive Officer, Systems and Engineering (ret.)
U.S. Naval Air Systems Command

Cheryl Lynn Resch
Principal Professional Staff
JHU Applied Physics Laboratory

Nathan L. Richardson
School of Engineering
Morgan State University

Kurt Riegel
Consultant

David C. Rhude
Senior Electronic Engineer
U.S. Department of Defense

Daniel E. Rio
Senior Research Physicist
National Institutes of Health

Michael A. Robert
Branch Head
U.S. Naval Surface Warfare Center

Jack C. Roberts
Principal Professional Staff
JHU Applied Physics Laboratory

Robbin Roddewig
Principal Member of Technical Staff
GCI Inc.

Benjamin M. Rodriguez
Senior Professional Staff
JHU Applied Physics Laboratory

Igor B. Rogozin
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

John A. Romano
Director of IT
University of Maryland

Robert William Root
Middle and Upper School Science Teacher
Wakefield School

William E. Roper
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Bruce R. Russell
Senior Professional Staff
JHU Applied Physics Laboratory

Carl V. Ryba
Senior Professional Staff
JHU Applied Physics Laboratory

Christopher M. Ryder
Principal Professional Staff
JHU Applied Physics Laboratory

Brian Sadler
Senior Research Scientist
U.S. Army Research Laboratory

John Sadowsky
Senior Associate
Zeta Associates, Inc.

Jennifer L. Sample
Senior Professional Staff
JHU Applied Physics Laboratory

John Samsundar
Senior Professional Staff
JHU Applied Physics Laboratory

Rachel Herring Sangree
Associate Research Engineer
JHU Whiting School of Engineering

JoAnne L. Saunders
Program Director
Raytheon Company

Randy Saunders
Principal Professional Staff
JHU Applied Physics Laboratory

Samuel J. Schappelle
Consultant

Harry Jerome Schepers
Vice President
Praxis Engineering

David A. Schug
Computer Scientist
U.S. Naval Air Warfare Center Aircraft Division
Sophia C. Scoggins
Lead Communications Engineer
The MITRE Corporation

Keith Scott
Principal Engineer
The MITRE Corporation

Albert Victor Secen Jr.
Systems Engineer Senior Staff
Lockheed Martin Corporation

Helmut Seifert
Senior Professional Staff
JHU Applied Physics Laboratory

Jonathan William Selby
Acquisition Professional
U.S. Marine Corps

Ralph D. Semmel
Principal Professional Staff
JHU Applied Physics Laboratory

H. Brian Sequeira
Principal Professional Staff
JHU Applied Physics Laboratory

Samuel Seymour
Principal Professional Staff
JHU Applied Physics Laboratory

Nawaz M. Sharif
Principal Consultant
Myriad Solutions, Inc.

John W. Sheppard
RightNow Technologies Distinguished Professor
Montana State University

Jin Yeong Shin
Principal Environmental Engineer
Washington Suburban Sanitary Commission

Stephen Shinn
Principal Professional Staff
JHU Applied Physics Laboratory

Karthik Shyamsunder
Application Architect
VeriSign, Inc.

D. J. Shyy
Principal Communications Engineer
The MITRE Corporation

Stan Siegel
Senior Systems Engineer
Science Applications International Corporation

Vincent Sigillito
Principal Professional Staff (ret.)
JHU Applied Physics Laboratory

David Paul Silberberg
Principal Professional Staff
JHU Applied Physics Laboratory

Joseph Mark Simons
Communications Engineer
The MITRE Corporation

Michael Smeltzer
Research Scientist
Evidence Based Research

Francis G. Smith
Networking Consultant
BAE Systems

Gordon D. Smith
Principal Professional Staff (ret.)
JHU Applied Physics Laboratory

Scott Smith
Professor, Computer Science
JHU Whiting School of Engineering

Edward A. Smyth
Principal Professional Staff
JHU Applied Physics Laboratory

Philip H. Snyder
Teacher, Customer Support
GXS

Raymond M. Sova
Principal Professional Staff
JHU Applied Physics Laboratory

James C. Spall
Principal Professional Staff
JHU Applied Physics Laboratory

Alexander Spector
Research Professor, Biomedical Engineering
JHU Whiting School of Engineering

Richard G. Spencer
Chief, Nuclear Magnetic Resonance Unit
National Institutes of Health

Richard F. Spiegel
Senior Professional Staff
JHU Applied Physics Laboratory

Thomas S. Spisz
Senior Professional Staff
JHU Applied Physics Laboratory

Gordon Lawrence Sprigg
Manager
Northrop Grumman Corporation

Jim Stafford
Principal Engineer
SRA International, Inc.
Faculty

Patrick H. Stakem
Senior Systems Engineer
MEI Technologies, Inc.

Scott Stanchfield
Senior Professional Staff
JHU Applied Physics Laboratory

Michael W. Stello
Civil Engineer
U.S. Army Corps of Engineers

Jay A. Stern
Product Line Chief Engineer
Raytheon Company

Leonid Stern
Professor, Mathematics
Towson University

Andrea Stoddard
Principal Environmental Engineer
Dynamic Solutions, LLC

Dan M. Stoianovici
Professor, Urology and Mechanical Engineering
JHU School of Medicine

Larry D. Strawser
Principal Professional Staff
JHU Applied Physics Laboratory

Seema Sud
Senior Scientist
GCI

Robert M. Summers
Director, Water Management Administration
Maryland Department of the Environment

Susan Jennifer Supplee
Contracting Officer
U.S. Naval Air Systems Command

Joseph Suter
Principal Professional Staff
JHU Applied Physics Laboratory

Wayne E. Swann (ret.)
JHU Applied Physics Laboratory

Robert Sweeney
Senior Professional Staff
JHU Applied Physics Laboratory

Daniel P. Syed
Principal Professional Staff
JHU Applied Physics Laboratory

Shahin Taavoni
President
Structural Software, Inc.

Stas’ Tarchalski
Industry Professor, School of Systems and Enterprises
Stevens Institute of Technology

Julie Tarr
Senior Professional Staff
JHU Applied Physics Laboratory

Leslie D. Taylor
Director, Flight Test Engineering
U.S. Naval Air Systems Command

Stewart W. Taylor
Technology Manager
Bechtel Corporation

Deanna Temkin
Senior Professional Staff
JHU Applied Physics Laboratory

David H. Terry
Senior Professional Staff
JHU Applied Physics Laboratory

Nitish V. Thakor
Professor, Biomedical Engineering
JHU Whiting School of Engineering

Cassie Thomas
Associate
Booz Allen Hamilton

Michael E. Thomas
Principal Professional Staff
JHU Applied Physics Laboratory

Christopher L. Thompson
Senior Professional Staff
JHU Applied Physics Laboratory

G. Richard Thompson
Principal Professional Staff
JHU Applied Physics Laboratory

Patricia Thompson
Senior Professional Staff
JHU Applied Physics Laboratory

Willie L. Thompson II
Electronic Engineer
NASA Goddard Space Flight Center

Bunny J. Tjaden
Lecturer, Engineering for Professionals
JHU Whiting School of Engineering

Ronald G. Tobin
Electronics Engineer
U.S. Army Research Laboratory

J. Stephen Topper
Senior Professional Staff
JHU Applied Physics Laboratory
Fred Torcaso
Senior Lecturer, Department of
Applied Mathematics and Statistics
JHU Whiting School of Engineering

William E. Torruellas
Senior Professional Staff
JHU Applied Physics Laboratory

Craig Robert Toussaint
President and CEO
Toussaint Consulting Associates, LLC

Christine Marie Trent
Published Historical Fiction Author

Morgan M. Trexler
Senior Professional Staff
JHU Applied Physics Laboratory

Gerard V. Trunk
Senior Professional Staff
JHU Applied Physics Laboratory

Overton M. Tuck
Vice President of Engineering
The Consulting Network, Inc.

Thomas J. Urban
Senior Professional Staff
JHU Applied Physics Laboratory

Sasha Ukhorskiy
Senior Professional Staff
JHU Applied Physics Laboratory

Christian John Utara
Chief Engineer
U.S. Department of the Navy

Leonard D. Vance
Senior Fellow
Raytheon Company

Frank C. Vaughan
Principal Professional Staff
JHU Applied Physics Laboratory

Paul A. Vichot
Senior Professional Staff
JHU Applied Physics Laboratory

Richard L. Waddell
Principal Professional Staff
JHU Applied Physics Laboratory

Jamie Walls
Senior Professional Staff
JHU Applied Physics Laboratory

Sue-Jane Wang
Associate Director
U.S. Food and Drug Administration

Yang Wang
Senior Technical Staff
Lockheed Martin Corporation

Sharon Anne Warner
Principal Professional Staff
JHU Applied Physics Laboratory

Heath E. Warren
Team Lead
Naval Air Warfare Center Aircraft Division

Darryl E. Washington
Senior Principal Engineer
The MITRE Corporation

C. Anthony Waters
Senior Professional Staff
JHU Applied Physics Laboratory

Adam Scott Watkins
Senior Professional Staff
JHU Applied Physics Laboratory

Timothy P. Weih
Professor, Materials Science and Engineering
JHU Whiting School of Engineering

Daniel E. Weimer
Vice President

Steven Weiss
Electrical Engineer
U.S. Army Research Library

William Joshua Weiss
Senior Principal Engineer
Hazen and Sawyer, P.C.

Douglas Scott Wenstrand
Principal Professional Staff
JHU Applied Physics Laboratory

Roger L. West
Principal Professional Staff
JHU Applied Physics Laboratory

Brenda K. Wetzel
Senior Professional Staff
JHU Applied Physics Laboratory

Bob Whinnery
Lecturer
JHU Whiting School of Engineering

J. Miller Whisnant
Principal Professional Staff
JHU Applied Physics Laboratory

Michael E. White
Principal Professional Staff
JHU Applied Physics Laboratory
Faculty

Michael J. White
Senior Professional Staff
JHU Applied Physics Laboratory

Keith Wichmann
Senior Professional Staff
JHU Applied Physics Laboratory

Peter R. Wilcock
Professor, Geography and Environmental Engineering
JHU Whiting School of Engineering

Warren O. Wilderson
Principal Fellow
Raytheon Company

Gregory S. Williams
Senior Professional Staff
JHU Applied Physics Laboratory

Justin C. Williams
Associate Research Professor
JHU Whiting School of Engineering

Ray M. Williamson
Senior Professional Staff
JHU Applied Physics Laboratory

Liza Wilson-Durant
President
Cambrian Corporation

Nathaniel Shaffner Winstead
Senior Professional Staff
JHU Applied Physics Laboratory

Audrey B. Winston
Information Systems Engineer, Principal
The MITRE Corporation

Denis Wirtz
Professor, Chemical and Biomolecular Engineering
JHU Whiting School of Engineering

Robyn L. York
Branch Supervisor, Space Department Information Systems
JHU Applied Physics Laboratory

David W. Young
Principal Professional Staff
JHU Applied Physics Laboratory

Michael Yu
Assistant Professor, Materials Science and Engineering
JHU Whiting School of Engineering

Yan Mark Yufik
Director
Institute of Medical Cybernetics, Inc.

David Zaret
Senior Professional Staff
JHU Applied Physics Laboratory

Harold Zheng
Senior Professional Staff
JHU Applied Physics Laboratory

Janice A. Ziarko
Assistant Manager, Technical Programs/Systems Engineer
The MITRE Corporation

Edward V. Ziegler
Senior Computer Engineer
National Security Agency

Lei Zong
Computer Engineer
Key Technologies, Inc.

James Daniel Zuber
Senior Professional Staff
JHU Applied Physics Laboratory

Gerald Herman Zuelsdorf
Senior Electronic Engineer
U.S. Department of Defense
Directions and Maps

Applied Physics Laboratory
Education Center

From Baltimore and I-95 (southbound): Take I-95 south from the Baltimore Beltway (I-695) intersection. Go 13 miles and take Columbia exit (Maryland Route 32 west). Go 2.5 miles and take Washington DC exit (US Route 29 south). Go 1.5 miles and take Johns Hopkins Road exit. APL is on the right about 0.5 mile. Turn right on Pond Road, and follow the signs to the Kossiakoff Center parking on the lower lot.

From Washington and I-95 (northbound): Take I-95 north from the Capital Beltway (I-495) toward Baltimore. Go 8 miles and take Maryland Route 216 west, then US Route 29 north. Exit onto Johns Hopkins Road. APL is on the right about 0.5 mile. Turn right on Pond Road, and follow the signs to the Kossiakoff Center parking on the lower lot.

Montgomery County Campus

From Washington D.C. and Northern Virginia: Take the beltway toward Towson to exit 25. Take Charles Street south for about 7 miles (when Charles Street splits a block after Loyola College and Cold Spring Lane, take the right fork). As you approach the university and cross University Parkway, continue southbound but be sure to jog right onto the service road. After you pass the university on the right, turn right onto Art Museum Drive. Just after the Baltimore Museum of Art, bear right at the traffic island onto Wyman Park Drive. Take an almost immediate right through the university gates. See page 13 for Homewood parking information.

From US Route 29: Proceed on US 29 to the Johns Hopkins Road exits. APL is about 0.5 mile west. Turn right on Pond Road, and follow the signs to the Kossiakoff Center parking on the lower lot.

Dorsey Student Services Center

From I-95 north or south: Exit I-95 towards Route 100 east. Exit Route 100 towards Route 1 south. On Route 1, move to the inside lane. At the first light, turn left onto Dorsey Road (Route 103). After about one-third mile on Dorsey Road, turn left onto Douglas Legum Drive. The JHU/Dorsey Center is on the second floor of the five-story white building with blue windows.

From I-95 (Baltimore Washington Parkway) north or south: Exit I-95 towards Route 100 west. Exit Route 100 using the Coca-Cola Drive exit. Turn left onto Coca-Cola Drive towards Dorsey Road. At the end of Coca-Cola Drive, turn right onto Dorsey Road. After about 1 mile on Dorsey Road, turn right onto Douglas Legum Drive. The JHU/Dorsey Center is straight ahead on the second floor of the five-story white building with blue windows.

Homewood Campus

From I-95 (southbound) or from I-695 (the Baltimore Beltway): Take the beltway toward Towson to exit 25. Take Charles Street south for about 7 miles (when Charles Street splits a block after Loyola College and Cold Spring Lane, take the right fork). As you approach the university and cross University Parkway, continue southbound but be sure to jog right onto the service road. After you pass the university on the right, turn right onto Art Museum Drive. Just after the Baltimore Museum of Art, bear right at the traffic island onto Wyman Park Drive. Take an almost immediate right through the university gates. See page 13 for Homewood parking information.

From I-95 (northbound): Exit at I-395, then take the exit to Martin Luther King Jr. Blvd. and follow the directions below.

From Maryland 295 (the Baltimore-Washington Parkway): Entering Baltimore, the parkway becomes Russell Street. Stay on Russell Street (with Oriole Park at Camden Yards looming before you) until you reach the right-hand exit marked Martin Luther King Jr. Boulevard (look carefully for this; the signs are small). Take King Boulevard until it ends at Howard Street (remain in one of the middle lanes of King Boulevard to avoid a premature forced right or left turn). Turn left at Howard Street and proceed about 2 miles. One block past 29th Street (where Howard Street becomes Art Museum Drive), turn left at the traffic island (just before the Baltimore Museum of Art) onto Wyman Park Drive. Take an almost immediate right through the university gates.

From I-95 (southbound) or from I-695 (the Baltimore Beltway): Take the beltway toward Towson to exit 25. Take Charles Street south for about 7 miles (when Charles Street splits a block after Loyola College and Cold Spring Lane, take the right fork). As you approach the university and cross University Parkway, continue southbound but be sure to jog right onto the service road. After you pass the university on the right, turn right onto Art Museum Drive. Just after the Baltimore Museum of Art, bear right at the traffic island onto Wyman Park Drive. Take an almost immediate right through the university gates. See page 13 for Homewood parking information.

From I-95 (northbound): Exit at I-395, then take the exit to Martin Luther King Jr. Blvd. and follow the directions below.

From Maryland 295 (the Baltimore-Washington Parkway): Entering Baltimore, the parkway becomes Russell Street. Stay on Russell Street (with Oriole Park at Camden Yards looming before you) until you reach the right-hand exit marked Martin Luther King Jr. Boulevard (look carefully for this; the signs are small). Take King Boulevard until it ends at Howard Street (remain in one of the middle lanes of King Boulevard to avoid a premature forced right or left turn). Turn left at Howard Street and proceed about 2 miles. One block past 29th Street (where Howard Street becomes Art Museum Drive), turn left at the traffic island (just before the Baltimore Museum of Art) onto Wyman Park Drive. Take an almost immediate right through the university gates.
Higher Education and Conference Center @ HEAT
From Baltimore and Washington, D.C., area: Take I-95 north to Exit 85 Route 22 toward Aberdeen/Churchville. Keep left at the fork in the ramp. Turn left onto Churchville Road (Route 22). Turn left onto Technology Drive. The center is on the left-hand side.

Southern Maryland Higher Education Center
From Lexington Park: Take Maryland Route 235 north approximately 6 miles to Airport Road. Turn left on Airport Road, and go about one-fourth mile to the Southern Maryland Higher Education Center on the left.

From Calvert County: Take Maryland Route 4 south. At Solomons, cross the Thomas Johnson Bridge, and continue 4 miles to the stoplight at Maryland Route 235. Turn right on Route 235, and go north past the Wildwood Shopping Center to Airport Road. Turn left on Airport Road, and go about one-fourth mile to the Southern Maryland Higher Education Center on the left.

From Charles County: Take Maryland Route 5 south to St. Mary’s County. About 20 miles south of Waldorf, Route 5 branches to the right toward Leonardtown, and the main four-lane road continues straight and becomes Maryland Route 235. Continue on Route 235 approximately 12 miles to Airport Road. Turn right on Airport Road, and go about one-fourth mile to the Southern Maryland Higher Education Center on the left.

Washington D.C. Center
From points north of the District of Columbia: Take I-95 to 495 (Capital Beltway) to Exit 30, Route 29 south toward Silver Spring. Follow Route 29 through downtown Silver Spring and cross Georgia Avenue until you reach the circle at the intersection of 16th Street, N.W. Turn left onto 16th Street. Take 16th Street to Scott Circle, bearing to the right to avoid the underpass. Turn right onto Massachusetts Avenue. The center is one block down on the right. Another option would be to take I-95 to 495 to exit 35 (Chevy Chase, Connecticut Avenue). Make a left at the exit onto Connecticut Avenue toward Chevy Chase. Follow Connecticut Avenue through Chevy Chase, Van Ness/UDC, Cleveland Park, Woodley Park, across the Taft Bridge and down toward Dupont Circle. Do not go under the tunnel; instead, turn left onto Q Street. Go three blocks to 17th Street and turn right, then go two blocks to Massachusetts Avenue. The center is on the corner of Massachusetts Avenue and 17th Street, N.W.

From points south of the District of Columbia: From Vienna, Falls Church, Tyson's, and Route 66: Take Route 66 into Washington. Go over the Roosevelt Bridge and follow the signs to Constitution Avenue. Make a left turn onto 18th Street, N.W. (there is a left turn arrow). Follow 18th Street through the city and across Connecticut Avenue (you will need to be in the middle lane in order to cross Connecticut Avenue and stay on 18th Street rather than veer left onto Connecticut). Go one more block on 18th Street and you will come to Massachusetts Avenue. Turn right onto Massachusetts Avenue, and go one block to 17th Street. The center is located on the corner of Massachusetts Avenue and 17th Street, N.W.

From Alexandria, South Arlington, 495, 95, 395, and Route 1: Take I-495 or 95 to 395. Take 395 (or Route 1) over the 14th Street Bridge and follow the signs for 14th Street, N.W. Take 14th Street to Thomas Circle at M Street. Get in the far right lane and take the outer circle 3/4 of the way around until you reach the turn-off for Massachusetts Avenue (it is just one lane at first, alongside green railing over a tunnel—you will merge with Massachusetts Avenue traffic). Take Massachusetts Avenue to Scott Circle at 16th Street and follow Massachusetts Avenue around the circle to 17th Street. The center is located on the corner of Massachusetts Avenue and 17th Street, N.W. Another option would be to take 14th Street through Thomas Circle to P Street. Turn left onto P Street and left on 17th Street. The center is on the corner of 17th Street and Massachusetts Avenue, N.W. This route would allow for more street parking options and would avoid traffic backed up on Massachusetts Avenue.

Parking at D.C. Center
Colonial Parking: 1625 Massachusetts Avenue, N.W.
The garage in the Washington Center is open from 7 a.m. until 8 p.m. weekdays during the fall and spring semesters (7 a.m. until 7 p.m. during the summer semester). While you cannot enter the garage after 8 p.m., you may exit until 10:45 p.m. Parking is a flat rate of $6 after 5 p.m., otherwise, it’s $8 per hour or $15 all day. Enter the garage from Massachusetts Avenue or 17th Street. Since it is sometimes difficult to enter this garage after 5 p.m., it is recommended that you arrive early or park at 1616 Rhode Island Avenue (see below). Note that your car may be towed if you block another car in this garage without leaving your key with the parking attendant. You will be responsible for all fees incurred as a result of being towed.

Colonial Parking: 1616 Rhode Island Avenue, N.W.
Parking is also available at the 1616 Rhode Island Avenue parking lot, next door to the University of California (one block away). The lot is open from 6 a.m. until 10 p.m., weekdays only. There is no entry after 6 p.m. and you must exit the lot by 10 p.m. to prevent being towed. Parking is a flat rate of $5 after 5 p.m. on weekdays, or $8 for the first hour, or $15 for a full day.

Parking on Saturdays
Saturday parking is available at the Denison parking garage located at 1717 Rhode Island Avenue (under St. Matthews Cathedral). The garage is open from 8 a.m. until 5 p.m., and parking is a flat rate of $5. Street parking is also available. While metered parking is not enforced on Saturdays, you should read all street signs to ensure that parking is permitted.

Parking at the University of California: 1616 Rhode Island Avenue (seven days a week, 24 hours a day). The lot is open from 6 a.m. until 10 p.m., weekdays only. There is no entry after 6 p.m. and you must exit the lot by 10 p.m. to prevent being towed. Parking is a flat rate of $5 after 5 p.m. on weekdays, or $8 for the first hour, or $15 for a full day.

Parking at D.C. Center
Colonial Parking: 1616 Rhode Island Avenue, N.W.
Parking is also available at the 1616 Rhode Island Avenue parking lot, next door to the University of California (one block away). The lot is open from 6 a.m. until 10 p.m., weekdays only. There is no entry after 6 p.m. and you must exit the lot by 10 p.m. to prevent being towed. Parking is a flat rate of $5 after 5 p.m. on weekdays, or $8 for the first hour, or $15 for a full day.

Parking on Saturdays
Saturday parking is available at the Denison parking garage located at 1717 Rhode Island Avenue (under St. Matthews Cathedral). The garage is open from 8 a.m. until 5 p.m., and parking is a flat rate of $5. Street parking is also available. While metered parking is not enforced on Saturdays, you should read all street signs to ensure that parking is permitted.

Do not park in the parking lot behind 1625 Massachusetts Avenue as it belongs to the church.

Metro
Many Washington, D.C. Center students travel to and from class on the Metro. The center is conveniently located near two Metro stops: Dupont Circle (south exit) on the red line (two blocks away) and Farragut West on the blue and orange lines (five blocks away).
Crystal City Center

From I-395 south: Follow I-395 south and take the Crystal City exit/Route 1 south (Jefferson Davis Highway) toward Alexandria. Travel on Route 1 south to 23rd Street. Make a left onto 23rd and an immediate right onto Clark Street. You will see the Hilton Crystal City on the immediate right and a red, white, and blue vertical “Park” sign—that’s the building and garage. Pull into the parking garage under the building and take elevator to the 12th floor, Suite 1200. The building’s street address is 2461 South Clark Street.

From Route 66 east: Follow Route 66 east to Route 110 south toward the Pentagon, Crystal City, and Alexandria. Passing the Pentagon on the right, continue on Route 110 south straight onto Route 1 south (Jefferson Davis Highway) to Crystal City. Make a left onto 23rd Street and an immediate right onto Clark Street. You will see the Hilton Crystal City on the immediate right and a red, white, and blue vertical “Park” sign—that’s the building and garage. Pull into the parking garage under the building and take elevator to the 12th floor, Suite 1200. The building’s street address is 2461 South Clark Street.

From Route 270 east: Follow Route 270 east to I-495 south to Cabin John Bridge. Just past the bridge, take the George Washington Parkway south. Travel on the G.W. Parkway and take the National Airport exit, crossing the overpass toward Crystal City. Take the Route 1 north Crystal City exit. Make a left onto 23rd Street and an immediate right onto Clark Street. You will see the Hilton Crystal City on the immediate right and a red, white, and blue vertical “Park” sign—that’s the building and garage. Pull into the parking garage under the building and take elevator to the 12th floor, Suite 1200. The building’s street address is 2461 South Clark Street.

Metro
Take the Blue or Yellow lines to the Crystal City station. Exit the station at 18th Street, turn left (south) on South Clark Street, and proceed for half a mile. The building will be on your left, just past the Hilton Crystal City. The building’s street address is 2461 South Clark Street.
The Johns Hopkins University
MONTGOMERY COUNTY CAMPUS
9601 Medical Center Drive
Rockville, MD 20850-3332
301-294-7070
The Johns Hopkins University
HOMEWOOD CAMPUS
3400 N. Charles Street
Baltimore, MD 21218
410-516-8000
The Johns Hopkins University
SOUTHERN MARYLAND HIGHER EDUCATION CENTER
44219 Airport Road
Wildewood Technology Park
California, MD 20619
301-737-2500
The Johns Hopkins University
HIGHER EDUCATION and CONFERENCE CENTER@HEAT
1201 Technology Drive
Aberdeen, MD 21001
443-360-9200
Index

Academic and Registration Calendar, ii
Academic Integrity, 9
Academic Misconduct, 9
Academic Regulations, 6-9
Academic Standing, 7, 9
Accreditation, 2
Adding Courses, 6
Administrative Staff, iv
Admission Requirements, 3-5
Admission to Other Divisions of the University, 4
Advisors, 6
Advisory Council, 156
Application Fee, 10
Application Procedures, 4
Applied and Computational Mathematics, 16-25
Applied Biomedical Engineering, 26-31
Applied Physics, 32-40
Applied Physics Laboratory Education
 Center, 13
 Computers, 13
 Directions/Maps, 175, 178-179
 Parking, 13
Auditors, 6

Bioinformatics, 41-52
Bioinformatics Concentration, 65
Biomedical Systems Engineering Concentration, 139
Biotechnology Concentration, 136

Calendar, ii
Certificates
 Graduate, 3
 Post-Master’s Study Candidate, 3
Change of Program or Concentration, 5
Chemical and Biomolecular Engineering, 53-58
Cell and Molecular Biotechnology/
 Biomaterials Concentration, 53
Civil Engineering, 59-62
Computational Biology Concentration, 42
Computer Engineering, 83
Computer Science, 63-80
Computer Usage Policy, 9
Computers, 12-13
Copyright Violations, 9
Course Credit, 5
Course Descriptions (see individual degree listings)
Course Enrollment Limits, 6
Course Load, 6
Course Numbering System, 5
Course Requirements (see individual degree listings)
Course Schedule, 5
Crystal City Center, 14,
 Directions/Maps, 177-178, 187

Data Communications and Networking
 Concentration, 65
Database Systems and Knowledge Management, 65
Degrees, 3
 Master of Science, 3
 Master of Engineering, 3
Directions and Maps to Campuses,
 Applied Physics Laboratory, 175, 178-179
 Crystal City Center, 177-178, 187
 Dorsey Student Services Center, 175, 178, 181
 Homewood, 175, 178, 182-183
 Montgomery County Campus, 175, 178, 180
 Washington DC Center, 176, 178, 186
 Southern Maryland Higher
 Education Center, 176, 178, 184
Higher Education and Conference
 Center@HEAT, 176, 178, 185
Disability Services, 11-12
Dismissal, 7
Distributed Computing Concentration, 66, 119
Dorsey Student Services Center, 14
 Directions/Maps, 175, 178, 181
Dropping Courses, 6

English Proficiency, 5
Electrical and Computer Engineering, 76-92
Electronics and the Solid State Concentration, 83
Environmental Engineering, 98
Environmental Engineering Advisory Board, 157
Environmental Engineering, Science
 and Management, 93-105
Environmental Planning and Management, 98

Facilities, 11-15
Faculty, 160-
Fees, 10
 Application, 4, 10
 Graduation, 10
 Late Registration, 6, 10
 Removal of Incomplete, 10
 Transfer Credit, 10
Financial Aid, 10-11

Genomics and Sequencing Concentration, 42
Geophysics and Space Science, 32
Geotechnical Engineering, 60
Grade Appeals, 9
Grade Reports, 8-9
Grading System, 8
Graduate Programs, 2
Graduation, 8
Graduation Fee, 10

188
Higher Educational and Conference Center@HEAT, 15
Directions/Maps, 176, 178, 185
Homewood Campus, 13
Book Store, Textbooks, 13
Directions/Maps, 175, 178, 182-183
Hopkins Student Union, 13
Libraries, 13
Parking, 13
Security Services, 13
Human-Computer Interaction Concentration, 119
Human-Computer Interaction and Visualization Concentration, 65
Incomplete Fee, 10
Incompletes, 8
Information Assurance, 111-116
Information Assurance CS Concentration, 65
Information Assurance ISE Concentration, 119
Information Assurance SE Concentration, 140
Information Management Concentration, 119
Information Systems Engineering, 117-121
Information Technology and Computation Concentration, 17
International Credential Evaluation, 5
International Student Services, 11
Inter-Site Links, 15

JCards, 11
JH Student Assistance, 12

Late Registration Fee, 6
Leave of Absence, 7

Manufacturing Concentration, 129
Master of Engineering, 3
Master of Science, 3
Master's Degree Candidate, 3
Materials and Condensed Matter Option, 33, 127
Materials Science and Engineering, 122-126
Mechanics Concentration, 128-129
Mechanical Engineering, 128-134
Modeling and Simulation SE Concentration, 141
Montgomery County Campus, 14
Cafe, 14
Computers, 14
Directions/Maps, 175, 178, 180
Library, 14
Parking, 14

Nanomaterials Concentration, 135
Nano/Microtechnology and Colloids and Interfaces Concentration, 54
Nanotechnology Option, 135-136
Networks Concentration, 112
Network Engineering, 119
Non-Degree Students, 3
Ocean Engineering, 60
Online Courses, 15
Registration Deadlines, 15
Online Orientation, 15
Books, 15
Operations Research Concentration, 17
Organization Management Concentration, 147

Photonics Concentration, 83
Photonics Option, 137
Policy Statements, 153-155
Alcohol and Drug, 154
Americans With Disabilities Act, 153-154
Campus Security Act Notice, 155
Firearms, 154-155
Nondiscrimination Policy, 153
Photograph and Film Rights, 155
Privacy Rights, 153
ROTC, 153
Sexual Harassment, 154

Probability and Statistics Concentration, 17
Probation and Dismissal, 7
Programs by Location Chart, 2
Program Plans, 6
Project Management Concentration, 139, 147
Protein Bioinformatics Concentration, 42

Quality Management, 148

Readmission, 4
Refund Policy, 10
Refund Schedule, 10
Registration, 5-15
Interdivisional, 6
Late, 6
New Applicants, 6
Online Courses, 6
Web, 5
Removal of Incomplete, 10
RF and Microwave Engineering Concentration, 83
Robotics and Controls Concentration, 129

Second Degree, 7
Signal Processing Concentration, 83
Simulation and Modeling Concentration, 18
Software Engineering Concentration, 64, 118
Software SE Concentration, 141
Southern Maryland Higher Education Center, 14
Interactive/Maps, 176, 178, 184

Special Students, 4
Special Topics, 66, 113, 119
Structural Engineering, 59
Student Services, 11-15
Systems Biology Concentration, 42
Systems CS Concentration, 65
Systems and Control Concentration, 84
Index

Systems Engineering, 138-146
Systems Engineering Concentration, 118, 138

Technical Innovation Management, 148
Technical Management, 147-151
Telecommunications and Networking
 Option, 64, 152
Telecommunications Option, 82
Textbooks, 6
Theory Concentration, 65
Time Limitation, 7
Transcripts, 11
Transfer Courses, 8
Transfer Credit Fee, 10
Trustees/Administration, 156-157
Tuition and Fees, 10

Veterans Benefits, 10-11
Violations of Academic Integrity, 9
Visa Status, 4-5

Washington DC Center, 14, 176, 178, 186
Weather, 12