Systems Engineering Project Overview

Presentation (Project-1)
Lesson Objectives & Course Map

- At the end of this lesson, the student should be able to:
 - Construct a Systems Engineering Project (SM4) timeline
 - Describe the role of the SM4 Project Instructor & Mentor
 - Summarize the expectations for each primary SM4 deliverable

This is an introduction to the project – you may not yet be ready to enroll in this course, but this session will provide an overview and some tips to consider
Topics

- Project Timeline
- Project Instructor vs. Mentor
- Project Deliverables
- Other Recommendations
SM4 Project Timeline (Notional)

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolled in System Design & Integration</td>
<td>Access Systems Engineering Project (SM4) site and review materials</td>
<td>All students registered for SM2 will be granted access to the Blackboard SE Project site.</td>
</tr>
<tr>
<td>Enrolled in System Test & Evaluation</td>
<td>Identify Project Instructor and Mentor</td>
<td>The earlier, the better! Either contact a mentor listed in the Systems Engineering Project Guidelines or contact the Project Instructor for designation of a mentor. Request access to your Project Instructor’s group and your Mentor’s group on Blackboard.</td>
</tr>
<tr>
<td>-10</td>
<td>Explore subjects for project/identify mentor</td>
<td>Start exploring project ideas with your mentor.</td>
</tr>
<tr>
<td>-5</td>
<td>Submit concept</td>
<td>The concept paper should clearly define the scope of your project. This deliverable is approved by the Project Instructor.</td>
</tr>
<tr>
<td>-2</td>
<td>Submit proposal</td>
<td>This is a formal proposal. This deliverable is approved by the Project Instructor.</td>
</tr>
<tr>
<td>0</td>
<td>Proposal approved</td>
<td>The specific schedule for the remaining deliverables will be captured in your project proposal.</td>
</tr>
<tr>
<td>1</td>
<td>Coordinate plans with mentor</td>
<td>Identify meeting periodicity, review methods…</td>
</tr>
<tr>
<td>+3</td>
<td>Submit Requirements Analysis Report/CONOPS</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+4</td>
<td>Submit Functional Analysis Report</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+6</td>
<td>Submit Trade Study</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+8</td>
<td>Submit Conceptual Design Report</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+10</td>
<td>Submit Test Plan</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+11</td>
<td>Submit A-Specification Report</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+12</td>
<td>Submit Draft Final Report/Risk Management Report</td>
<td>This deliverable is approved by your assigned mentor.</td>
</tr>
<tr>
<td>+14</td>
<td>Deliver Final Report and Oral Presentation</td>
<td>You are required to present your completed project to the SM4 Review Board. Your final grade will be determined by the Board.</td>
</tr>
</tbody>
</table>
Mentors

- SM4 Mentors are available to review your Project Concept and Project Proposal deliverables prior to submission to your Project Instructor for approval.
 - If you don’t know how to contact an SM4 mentor, contact Jacqueline Rowe at 240-228-6002 or at Jacqueline.Rowe@jhuapl.edu.

- Once your Project Proposal is approved, your mentor is available to:
 - Answer questions
 - Review deliverables/provide feedback
 - Approve deliverables
 - Assess your readiness for the final oral presentation

- It is important to note that SM4 is an individual project. Don’t expect your Mentor to manage your schedule. You are responsible to complete the project as documented in your proposal.
Read the overview in the latest SM4 guidelines

The proposal includes:
 ▪ System Introduction
 ▪ Need for the System
 ▪ System Architecture/Description of System
 ▪ Project Background
 - WBS
 - Milestones and Schedules
 - Risk Management/Initial Risk Assessment

Systems Engineering Justification

Probably the most difficult part of the project is how to start it!
Tips for Starting a Project

- Consider picking a topic that you have some interest in, as you will be studying this topic for the entire term. It can contain both hardware and software elements, but we discourage doing a software-only system.

- Start with identifying some system needs: look around you either at work, home, or areas that you think might need some improvements.

- Next, look at the context of your proposed system. How can this concept or capability help address the gaps?

Note your project does not have to be a work-related topic, and in many cases that should be avoided; you may know too much about the topic and be tempted to dive right into the solution space, rather than using the systems engineering process.
Requirements Analysis

- **Recommendations:**
 - Start traceability at the beginning! Establish a mechanism to maintain traceability from needs analysis through system conceptual design

 Maintain traceability to your sources: interviews, web searches, literature searches…

 - Design your products to be easily updated. As you employ the SE process, you will find the need to update earlier products

 Don’t forget to number your requirements (a hierarchical numbering system is best)

 - Document the source of every requirement

 Should include interview results as an Appendix

 - Include a concept of operations
 - Include key performance parameters
 - Make sure your requirements are verifiable (verification cross reference matrix)
A simple function tree is simply not adequate to establish a functional architecture.

Develop the products required by your project to adequately describe the functional architecture
- Function Trees
- Functional Context Diagram
- Functional Block Diagrams
- Functional Flow Diagrams
- States and Modes diagrams
- Interface Diagrams
- …
Conceptual Design

- When translating your functional architecture into the physical domain, don’t forget traceability!
- Document your physical interfaces and maintain traceability with your functional interactions
- Develop the products required by your project to adequately describe the functional architecture
 - Physical Context Diagram
 - Physical Block Diagrams
 - Allocation Diagrams
 - Interface Control Documents
 - …
Trade-Off Analysis

- Recommendations:
 - Spend some time selecting the “right” trade study. Some are more important than others, and you will be asked to justify your choice.
 - Address how your trade study will address / mitigate risk on your project.
 - Check your numbers (including significant digits).
 - When performing sensitivity analysis, justify your approach.
Risk Management Report

- Capture risks at the beginning of the product and during execution
 - Technical risks (related to the system)
 - Project risks (related to the SM4 course)
- Use the standard 5x5 risk grid
- Update the report before every deliverable submission
- Capture the final state of the risks at the end of the course
- Include risk waterfalls
 - Show the risk levels over time on a graph
- In some instances, the Risk Management Report will be incorporated directly into the Final Report. Follow your Mentor’s guidance.
Test Plan

- Develop a plan for which to evaluate your system’s performance
- Facilitate consideration of the test portion of the systems engineering method
- Test plan should include:
 - The pertinent requirements that will be included in the test
 - The test environment
 - The equipment that would be needed to monitor and analyze the test
 - The test subjects/expertise to conduct and analyze the test
 - The desired results to determine if the test was successful
 - The metrics intended to be collected
System Specification

- It should incorporate “lessons learned” from your requirements analysis, functional analysis, physical allocation, and trade studies
- It should *not* be the same as the initial requirements analysis report
- All requirements should be verifiable (a verification matrix should be developed)
- All requirements should have associated MOPs (threshold and objective performance parameters)
- Include a metric that captures the number (and percentage) of quantified requirements
Final Report

- Recommendations:
 - Capture lessons learned throughout the project (don’t try to remember them all at the end 😊).
 - Compare your estimated (planned) hours against your actual hours. Provide an explanation for any significant deviations.
 - Evaluate the project as a whole and identify follow-on activities as appropriate.
 - Evaluate the SM4 course as a whole and provide recommendations for improvement.
 - Include all project products (final versions) as appendices (including the oral presentation).

- In-Class Students:
 - Produce one/two final binders with all materials included (# of binders will be identified by your mentor).
 - Produce one/two CDs with all materials included.

- Online Students:
 - Upload all final artifacts to your Project Instructor’s Blackboard site 24 hours prior to your presentation.
Other Recommendations

- **Configuration Control**
 - Maintain configuration control of your products. As you receive feedback from your advisor/mentor, don’t lose track of the changes!

- **Quality Time**
 - Dedicate quality time each week to work on SM4 products.

- **Reference Notebook**
 - Keeping all of your notes and references in one place can be very helpful as you make progress on your project or if you are called away on unexpected travel. Although a reference notebook is not a requirement, it’s a good idea!
To CORE or not to CORE...

- The use of CORE is completely optional
- **PROS**
 - Maintains traceability
 - Generates diagrams
 - Maintains configuration control between database elements
- **CONS**
 - Takes ~20–30 hours to become proficient in the tool
 - CORE generated reports will require augmentation by the student
- To learn more about CORE, check out the YouTube videos created by Christopher (Chuck) Olson: https://www.youtube.com/results?search_query=JHUOlson

JHU EP provides academic licenses to CORE that are available on the SM-4 website; the YouTube videos provide a short introduction on how to use CORE. You may also choose to use any other tool that may help you with the configuration control – other tools are StarUML, Enterprise Architect, and Visual Paradigm.
Questions?
Oral Presentation

- Recommendations:
 - Don’t forget to introduce yourself! Include a slide about yourself early in the presentation.
 - Include samples of each of your SE deliverables. Be prepared to discuss them in detail (a reference notebook would be very helpful).
 - Be prepared to delve into your project binder. Know where to find your various products.
 - Address your schedule assessment (planned vs. actual).
 - Leave enough time to discuss your lessons learned and recommendations.
 - Leave adequate time for questions.
References