This course provides a detailed examination of the conceptual framework for modeling communications between processes residing on independent hosts, as well as the rules and procedures that mediate the exchange of information between two communication processes. The Open Systems Interconnection Reference Model (OSIRM) is presented and compared with TCP/IP and other network architectures. The service definitions and protocols for implementing each of the seven layers of the Reference Model using both OSI and TCP/IP protocols are analyzed in detail. Internetworking among heterogeneous subnets is described in terms of addressing and routing, and techniques for identifying different protocol suites sent over the subnets are explained. The protocol header encoding rules are examined, and techniques for parsing protocol headers are analyzed. The application layer sub-architecture for providing common application services is described, and interoperability techniques for implementing multiprotocol internets are presented. Topics include layering, encapsulation, SAPs, and PDUs; sliding window protocols, flow and error control; virtual circuits and datagrams; routing and congestion control algorithms; internetworking; NSAP and IP addressing schemes; CLNP, IPv4, and the new IPv6 internet protocols; RIP, OSPF, ES-IS, and IS-IS routing protocols; TP4 and TCP transport protocols; dialog control, activity management, and the session layer protocol; ASN.1 encoding rules and the presentation layer protocol; application layer structure and the ACSE, CCR, ROSE, and RTSE common application service elements; OSI VT, FTAM, and MOTIS application protocols; TCP/IP TELNET, FTP, and SMTP application protocols; OSI transitioning tools; multiprotocol networks; and encapsulation, tunneling, and convergence techniques.
Course prerequisites: 
605.471 Principles of Data Communications Networks.
Course instructor: 
Nieporent

View Course Homepage(s) for this course.

Course all programs: 
Computer Science
Cybersecurity