This course is an introduction to theory and applications of stochastic processes. The course starts with a brief review of conditional probability, conditional expectation, conditional variance, central limit theorems, and Poisson Process. The topics covered include Gaussian random vectors and processes, renewal processes, renewal reward process, discrete-time Markov chains, classification of states, birth-death process, reversible Markov chains, branching process, continuous-time Markov chains, limiting probabilities, Kolmogorov differential equations, approximation methods for transition probabilities, random walks, and martingales. This course is proof oriented.
Course prerequisite(s): 
Differential equations and EN.625.721 Probability and Stochastic Process I or equivalent.

View Course Homepage(s) for this course.

Course instructor(s) :