This course covers cybersecurity systems engineering principles of design. Students will learn the foundational and timeless principles of cybersecurity design and engineering. They will learn why theories of security come from theories of insecurity, the important role of failure and reliability in security, the fundamentals of cybersecurity risk assessment, the building blocks of cybersecurity, intrusion detection design, and advanced topics like cybersecurity situational understanding and command and control. The course develops the student's ability to understand the nature and source of risk to a system, prioritize those risks, and then develop a security architecture that addresses those risks in a holistic manner, effectively employing the building blocks of cybersecurity systems—prevention, detection, reaction, and attack-tolerance. The student will learn to think like a cyber-attacker so that they can better design and operate cybersecurity systems. Students will attain the skill of systematically approaching cybersecurity from the top down and the bottom up and have confidence that their system designs will be effective at addressing the full spectrum of the cyber-attack space. The course also addresses how the cybersecurity attack and defense landscape will evolve so that the student is not simply ready to address today’s problems, but can quickly adapt and prepare for tomorrow’s. The course is relevant at any stage in a student’s curriculum: whether at the beginning to enable the student to understand the big picture before diving into the details, at the end as a capstone, or in the middle to integrate the skills learned to date.

Course prerequisite(s): 

695.601 foundations of Information Assurance and 605.621 Foundations of Algorithms

Course instructor(s):