Amir Bijandi

Mentor: Timothy Davis

Remote-Guided Pickup Drop Off System RGPDOS

JOHNS HOPKIN WHITING SCHOOL of ENGINEERING

SYSTEM ENGINEERING MASTER'S PROJECT

AGENDA

- ≻My Background
- ≻Introduction & need
- ➢ Five-minute Video
- ➤CONOPS (initial & final)
- ≻How did we model the RGPDOS?
- Reports: RA, FA, TS, Conceptual design, etc.
- ➢ Risk Management
- ➢ Recommendations

TECH. BACKGROUND

U.S. MERCHANT MARINER 7+ YEARS OF MARITIME EXPERIENCE IN BOSCO, VSC, D.C. CRUISES EDUCATION: BS, MARINE ENGINEERING BS, NAVIGATION CURRENTLY STUDING M.S. SYSTEM ENGINEERIGN FUN FACTS; VIOLONIST & COMPOSER SWIM COACH LOVE NATURE & READ BOOKS

Introduction

RGPDOS initial concept is a system that;

Improve maritime transportation implementing SE processes.

Decrease TTL cost and needs for personnel

Minimize loss of lives and property

Eliminate the deficiencies and downsides of the current system.

Stakeholders;

Marine pilots

Port Management

VTS Personnel

Ships Crew

AV pilot (System operator)

What is going on ? What is wrong?

- Spend a night in the mouth of the Chesapeake Bay waiting for the inbound cargo ships

- VTS must allocate **a noticeable time to schedule** the marine pilots.

- Delays in-bound/ out-bound vessels

- Climbing up/down the pilot ladders is risky and could jeopardize the marine pilot's life

Results

Question	Discerption	Mean result	Result considered
1	Number of launches are currently used	1.9	2 Launches
2	How many marine pilots are needed	10.6	11 pilots
3	The average consumption of a pilot boat	Sensitive information	100 gph (50 gph for each launch)
4	Yearly maintenance cost of a pilot boat in the port of Baltimore	Sensitive information	\$55k
5	Any alternative system is currently used	NA	NO
6	How many pilot operations per day	Sensitive information	18 operation per day
7	Maximum traveling speed of the current system	20	20kn
8	Maximum boarding speed	8	8 kn
9	Number of incidents related to the current system	Sensitive data	46% of all incidents
10	If the bay pilots relieved by the harbor pilots	Yes	Yes
11	What is the most noticeable downside with the present system	70 % mentioned, Climbing up and down rope ladders	Climbing up and down rope ladders

GPS to RGAV

RGAV to other entity, vice versa

Communication through GSM

C. Radio Communication

Initial ConOps

Utilize VTOL capabilities to transfer MPs

Autonomously Schedule MP

Autonomously picks the fastest available RGAV

Autonomously charge/refuel RGAV

Comply with Safety/Security measures (ISPSS Code, FAA Rules, IMO Regulations,...)

Cost-effective comparing to Launches and rope ladder

Faster and Safer

LET'S WATCH THE VIDEO

How We Modeled?

MBSE Methodology Tool Language

High-level context diagram (Black box)

Conceptual Block Diagram

ibd [Block] RGPDOS Domain [RGPDOS Domain]

Requirement Development

			Key Performance Parameters KPP		
Req I ID		Requirements Title	Requirement Text	Threshold	Objective
KPP		availability	The RGPDOS shall have a system availability ≥99.8 %.	System availability of 99.8%	System availability of 100%
NOT		Fast transportation Harbor to PBA	The RGPGOS shall transfer marine pilots from harbor to PBA in less than 2 h(T)	2h	1h
NEGOTIABLE		·	The RGPGOS shall transfer marine pilots from PBA to harbor in less than 2 h.(T)	2h	1h
	1.2. 3	Fast transportation	The RGPGOS shall transfer marine pilots from a ship to a ship in the PBA in less than 0.5h(T)	30 min	15min
	1.27	Retrieval of information	The system shall enable retrieval of information about marine pilot transportations as needed by the port administration.	Data available for ≥ 6 months	Data available since system inception
	3.22	Clean source of energy	The RGPDOS shall use a clean source of energy in order to comply with 40 CFR-part 87, CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES.	comply with 40 CFR-part 87, CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES.	Zero emission and no air pollutant.

Requirements Sample

ID	Row #	Requirement Name	Requirement Statement	Туре	Traceability	КРР	Verification	Function ID	Function Name	Pa
1.0 OPE	RATIO	NAL REQUIREMEN		_	<u></u>	10-1	ž.			254
1.1	1.	System availability	The RGPDOS shall have a system availability of ≥99.80 %.	QN	0.7	х	A	7.0 7.8.3 7.8.4	Support maintenance Switch to EP Switch back to main power	4.0 RGAV Subsystem 3.0 EP 4.8 Flight Computer 4.19 RGAV Diagnostics 3.5 EP Diagnostics 2.4 GCS Diagnostics 5.5 NWS Diagnostics
1.2	Fast Tra	ansportation								
1.2.1	2.	Fast transportation Harbor to PBA	The RGPGOS shall transfer marine pilots from harbor to PBA in less than 2 h(T)	QN	0.1 0.4 UCS01	X	Т	5.0	Transfer MP	4.0 RGAV Subsystem 2.0 GCS
1.2.2	3.	Fast transportation PBA to Harbor	The RGPGOS shall transfer marine pilots from PBA to harbor in less than 2 h.(T)	QN	0.1 04 UCS02	х	н	5.0	Transfer MP	4.0 RGAV Subsystem 2.0 GCS
1.26	28.	Encrypted communication	The internal communication of the system with mobilized component(s) used to transport the marine pilot shall be encrypted by 128 bit(T)/ 256bit(O)	QN	0.5	X	A	5.1.3.2	Encrypt real-time codes	4.4 OBSS On-Board Security Sys
1.27	29.	Retrieval of information	The system shall enable retrieval of information about marine pilot transportations and access to the system pertaining to the last 180 days as needed by the port administration.	QN	0.9	x	Т	12.0 12.6 12.6.1 12.6.2 12.6.3	Archive data Store data Compress data Format data Save data	4.20.5 Flight data recorder 5.2 Server CPU 5.2.1 Network operating software 5.6 Cache memory
2.0 Functi	ional Req	uiremeats								
2.112	12.	Flight range	The system shall be able to accomplish a flight range \geq 150(O) nm/145nm(T) Flight range is the maximum distance that the RGAV can fly without stopping while at maximum carrying capacity.	BI	1.	5		E	4.2.5 Fly a required flight path while c payload	arrying a 4.8.1 AV software 4.8 Flight Computer 4.15 Steering systems

Requirement Development

Project Stage	Total	Quantitative	%	Binary	Qualitative	
Requirements Analysis Report	144	61	42	28	55	
Functional Analysis Report	184	83	45	35	67	
Trade Study	190	87	46	36	67	
Conceptual Design Report	195	90	46	37	68	
System Specifications	239	173	72	66	- 0	
Risk Management	240	174	73	66	0	
Test Plan	245	179	73	66	\ 0	
Final	245	179	73	66	0	
					SYSTEM SPECIFICATION REQUIREMENTS	
					Binary Qualitative 28% Quantitative 72%	

Functional flow Diagram (Level Zero)

Trade Study

Formal :

What technology can be the best ??? VTOL capability & point-to-point transport

Informal:

- Cost-effective Energy source
- Charging stations functionalities.
- High-range wireless communication

							Ground Speed = V
		ST 12-00-00	CRITEF	RIA	Range	Distance	d d d d d d d d d d d d d d d d d d d
REQ. ID	Requirement Name	SELECTION CRITERIA TO SYSTEM REQUIREMENTS TRACEABIL Requirement Statement	Rational	Max.	. Range 🦻	Range = Ground	Distance = Ground Speed x time d = V t d Speed x max flight time $R = V t_{max}$
Revisio	ous: N= New R=		KPP				
Maxin	num Flight Range	= Revisions E= Existing				RGAV - subsystem redur	ndancy
0.4	Cost-effective system of	Provide a system to reduce the need for personnel and cut down the total cost in Q					
1.2.1	transportation Fast transportation Harbor to PBA	order to increase the system cost-efficiency. The RGPGOS shall transfer marine pilots from harbor to PBA in less than 2 h(T) Q	Higher ranges reduce the used for numbers of E charging stations and RGAV usin. Enable continuously fly along the path without E X unnecessary landings for reduitecharge Enable to		A	Ri	
1.2.2	Fast transportation PBA to Harbor	The RGPGOS shall transfer marine pilots from PBA to harbor in less than 2 h.(T)	Enable continuously fly along the path without E X unnecessary landings for refuel recharge. Enable to			Run RGAV - redundacy of	
1.2.3	Fast transportation STS	The RGPGOS shall transfer marine pilots from a ship to a ship in the PBA in less than 0.5h(T)	increase average speed. Catable continuously fly along the path without E X unnecessary landings for refuel techarge. Enable to increase average speed.	Reli	iability B ⁺	components within sub	osystem
1.5	Safe point-to- point transportation	The RGPDOS shall safely transport the marine pilot from harbor to the Pilot Boarding Area PBA and vice versa	High ranges enable to accomplish this mission. E X	ПСП			
2.1	Number of missions per day	The system shall be capable of accomplishing 40 missions per 24h. Q	More numbers of missions can be accomplished with E high ranges.				
2.11.2	Flight range	The system shall be able to accomplish a flight range greater than 145 nm	Enable to satisfy this requirement (minimum N acceptable range)				
Maxii 0.3 5.5	mum takeoff weight Safe means of transportation Demographic constraints Demotration constraints	Provide a safe transportation system in order to comply with the regulatory system, Coast Guard and FAA Rules, and improve the safety of pilotage operations. The system shall be able to safely transport a marine pilot and their accessories which we to 250th work baselet of 7.0 ft or lass.	Essential for a safe flight E Eachie to satisfy this requirement. Minimum E scourt-ble motival	💛 Max. Tak	eoff Weigh [.]	t F	
5113	: 2.11.1	The system dual he shirts a surveyork a shipts carp proce that (4) as Precise a sub-transportation relation in a	Provide a state providence provide 2	Crui	se Speed		V2
KPP	: YES				se speed		
		ame: Flight Range					· ···
		e system shall be able to acco			Efficie	ency	
a flig	gnt Range ≥	2 145 nm when the reported	d wind is no greater tha	an 5kn Ma	x. Capacity		

e VTOL BARTINI wins

PHYSICAL BDD

Final risk manifest							
Risk ID	Title	Description	Туре				
R001	GCS to RGAV Communication loss	If GCS lose communication with RGAV, The AV will not be remotely guided any longer.	Technical				
R002	RGAV start-up failure on the cargo ship	If RGAV fails to start up for any reason when it is already landed on the cargo ship, the marine pilot will not be able to disembark, and the out- band vessel will take it away.	Technical				
R003	RGAV subsystem failure	If RGAV technically fails, the Air Vehicle will crash.	Technical				
R004	The VTS Communication loss	If the RGPDOS cannot communicate with VTS, the pilotage operation will be stopped.	Technical				
R005	Charging station malfunction	If malfunction with the charging stations (out of power etc.), RGVA will not be charging.	Technical				
R006	Course completion in two semesters	Due to taking another course simultaneously, and a full-time job, there is a potential that the completion of the project in two semesters may not be possible.	Project				
R007	ATC communication loss	Loss of communication between the system and ATC makes the operator unable to ask for flight permit.	Technical				
R008	Complexity of the system	If the complexity of RGPDOS is underestimated, the project might not be doable within budget and schedule.	Technical				
R009	Security breach	Unknown trojans and hacker attacks may cause system down.	Technical				
R010	Fatal crash	If the RGAV for any reason crashes the Marine pilots risk their lives.	Technical				
R011	Unknown unknown	Unknown changes, threats, regulations are not identified in the preliminary risk assessment might urge along the path of project.	Technical Project				
R012	Local power outage	If any residential power outage, system power shut down.	Technical				

Project Management

Nov 3rd BCWB-BCWS= 4860 - 5520 = - 660 Behind Schedule

Dec 1st Behind schedule \$240

LESSONS LEARNED

- 1. Trade space is larger during early SE phase.
- 2. Information gathering in the need analysis stage is a risky task in terms of the schedule
- 3. Coupling and cohesions to cope with possibly unknown changes
- 4. Trade Study processes are not only used for simple market decisions
- 5. Magic Draw NOT support N^2 diagrams.
- 6. Error#400 with magic draw means that the modeling tools does not have enough memory allocated to work property.
- 7. so at the early stage of the SE process, we do not want to unnecessarily constrain our design.
- 8. Everything is linked to cost.

Recommendations

- -Include coding in both M.S. SE program and capstone project
- -Establish correspondence with agencies and incorporations
- -Require SE student to use the Lab facility to conduct at least one test case scenario
- -Include MBSE course in the core courses.
- -Award the best project of each semester
- -Individual project propelled me to apply SE processes from NA to SSR for the first time.

