

MoTeU Mobile Telemedicine Unit

Sergio Sicard MSc Systems Engineering Capstone Project

Agenda

- Introduction
- Needs Analysis / CONOPS
- Requirements
- Functional Analysis
- Trade Study
- Conceptual Design
- Test Plan
- Risk Analysis
- Conclusion

About Myself

Born and Live in Bogotá, Colombia - May 20th 1978

Education

Telecommunications Engineering (2010) Universidad Piloto de Colombia

MSc SE: 2012 - 2013 / 2018 - 2019

Work

Manager, Systems Engineering oct. de 2016 – actualidad - 3 años y 1 mes Bogotá D.C., Colombia

Consulting Systems Engineer nov. de 2011 – oct. de 2016 · 5 años Bogotá, Colombia

Systems Engineer oct. de 2008 – feb. de 2012 · 3 años y 5 meses

Especialista de HUBs Telmex Colombia jul. de 2007 - feb. de 2008 · 8 meses

Hobbies & Interest

- Road cycling
- Photography
- Audio & Music

Needs Analysis & CONOPS

Need Analysis Characterization of the Problem

The majority of the population located in remote rural areas in Colombia has no access to specialized medical attention, in many cases not even access to basic medical and health services

Need Analysis Mission Needs Statement

The proposed system shall provide remote medical attention to patients suffering from chronical diseases located in remote and difficult-to-access areas of Colombia, by allowing them to connect with specialists and advanced medical centers located in remote, urban locations using technology tools such networking, satellite communications, telepresence (audio and video conference), immersive communications, cyber security, and internet of things (IoT), among others.

The main purpose is to develop an affordable, compelling and effective system that could benefit the inhabitants of remote locations by interconnecting them with specialist, laboratories and medical center using Information and Communication Technologies.

CONOPS

The scope is to provide remote medical attention to patients suffering chronic diseases that require periodic medical consultation and examination but are located in remote areas with limited access to this medical services. The MoTeU system should be a mobile system, easy to transport, deploy and operate, capable to carry portable medical equipment, communications equipment, medical supplies and all the necessary resources needed to provide remote consultation and diagnosis as well as to provide remote treatment to the user population.

MoTeU System Context Diagram

Scenarios

Scenario 1. Basic consultation Scenario 2. Consultation with the aid of auxiliary medical equipment

Scenario 3. Laboratory Sample Recollection and Analysis.

Requirements

Requirements Analysis

Category	Inputs	Methodology
Where it will operate	 Colombian governmental organizations: National Statistics Agency (DANE) National Transportation Agency (INVIAS) National Weather Agency (IDEAM) Health NGOs 	Public information research • Online • Printed
What it has to do	Medical personnel: • Physicians • Nurses • Health Providers	Interviews Online research
How it is going to do it	SMEs • Medical • Comms / IT Commercial vendors • Ruggedized facilities • IT • Medical equipment • Support	Interviews Online research Vendors Interaction Self Knowledge

Mission Needs

ID	Statement
MN01	To provide remote medical access to rural population in Colombia
MN02	To provide means of real time communication between patients and physicians
MN03	To be able to transport medical equipment to remote locations
MN04	To be able to operate in a wide range of environmental temperatures and humidity
MN05	To be able to provide its operational status
MN06	To provide connectivity to users and operators
MN07	To be able to gather medical information from patients and transmit it in real time or asymmetrically
MN08	To be able to collect biological samples from patients and analyze, store and transport them
MN09	To be able to securely store digital data
MN10	To be able to securely transmit digital data (such pure data, voice and video)

Requirements

Requirements Evolution

Row Labels	Count
System	90
Functional	71
Performance	19
Тор	23
Capability	11
Operational	12
Grand Total	113

Requirements Codification

E.	ID	Requirement	Level	Туре	l
	1 T-0-1	The MoTeU shall provide audio and video capabilities to communicate with physicians	Тор	Operational	
3	2 T-O-2	The MoTeU shall be able to perform medical imagery procedures	Тор	Operational	
1	3 T-O-3	The MoTeU shall collect and analyze biological	Top	Operational	
	"	'Level"-"Type"-"Number"			

Operational Requirements

Number	ID	Requirement	Level	Туре
	1T-O-1	The MoTeU shall provide audio and video capabilities to communicate with physicians	Тор	Operational
	2T-O-2	The MoTeU shall be able to perform medical imagery procedures	Тор	Operational
	3T-O-3	The MoTeU shall collect and analyze biological samples (such blood or tissue) onsite	Тор	Operational
	4T-O-4	The MoTeU shall be able to store and transport biological samples	Тор	Operational
	5T-O-5	The MoTeU shall be self-sufficient in power source	Тор	Operational
	6T-O-6	The MoTeU shall be cyber resilient to data exfiltration, manipulation, and pivot attacks	Тор	Operational
	7T-O-7	The MoTeU shall allow operators to write and document digitally the information of the patients	Тор	Operational
	8T-O-8	The MoTeU shall allow operators to access the stored information from patients at any time	Тор	Operational
	9T-O-9	The MoTeU shall be able to acquire vital signs from patients and send the data	Тор	Operational
	10T-O-10	The MoTeU shall be able to acquire diagnose imagery	Тор	Operational
	11T-O-11	The MoTeU shall be deployed and operated by at least one operator	Тор	Operational
	12T-O-12	The MoTeU shall be able to provide enough power resources for internal active equipment to operate	Тор	Operational

KPP (Sample)

ID	Requirement
S-D-113	The MoTeU shall provide protection against elements such water and dust (IP58MW) when transporting the active elements of the system
0-1-110	of the system
S-P-112	The MoTeU shall provide protection to extreme windy conditions up to number 7 in the Beaufort scale (50–61 km/h)
S-P-107	The MoTeU shall ensure percent packet loss ≤ 1
S-P-106	The MoTeU shall ensure a jitter ≤ 30 ms
S-P-105	The MoTeU shall ensure a one-way latency ≤ 150 ms
S-P-73	The MoTeU shall be able to capture audio frequencies from 20 Hz to 20 KHz
S-P-72	The MoTeU shall be able to capture high definition video of at least 30 fps
	The MoTeU shall be able to acquire high definition imagery of at least 20 Mpixels (photography) to document the condition o
S-P-53	the patient
S-P-52	The MoTeU shall provide data storage capabilities of at least 40 TB to store digital data
S-P-42	The MoTeU shall encrypt all outgoing traffic using AES of 128-bit, 192-bit, and 256-bit keys
S-P-41	The MoTeU shall be able to isolate and report malicious activity in the data network
S-P-40	The MoTeU shall apply Quality of Service (QoS) policies to Voice and Video traffic, ensuring at least 2.5 Mbps (Receive) and 3.0 Mbps (Send) for High Definition video traffic and at least 320 Kbps for audio traffic
S-P-37	The MoTeU shall provide a primary data link of at least 100mbps bidirectional
	· · · · · · · · · · · · · · · · · · ·
S-P-34	The MoTeU shall be able to maintain a constant and controlled humidity level between 40% and 50% while operating
S-P-33	The MoTeU shall be able to maintain a constant and controlled temperature of 18 degrees celcius at all times while operating
S-P-32	The MoTeU must provide light levels between 20 foot candles and 150 foot candles
S-P-24	The MoTeU shall be able to operate under heavy rainy conditions (above 9000mm of precipitation)
S-P-23	The MoTeU shall be able to operate in humidity range from 60% to 100%
S-P-22	The MoTeU shall be able to operate in ranges of temperature between -10° and 50° Celsius

Functional Analysis

Functional Analysis Methodology

The functional analysis of MoTeU will be approached by using Model Based Systems Engineering (MBSE), where several graphical representations are used to depict the different functions of the systems itself. The following models are presented during this analysis:

- Functional Context Diagram
- Functional Hierarchy Model
- Functional Block Diagram
- Functional Flow Diagram
- Requirements traceability
- N² Diagrams

Functional Context Diagram

- Operator 1 (technician): is responsible to activate and operate the system, may provide commands and actions of certain type to accomplish such task and may receive information from the system related with its operation.
- Operator 2 (nurse): will interact mainly with patients and medical related elements of MoTeU, receive and provide audio and video communications
- 3) Patient: Interacts with MoTeU providing voice and video to communicate with remote users of the system. Also, will provide vital signs information and biological samples such blod or tissue to be analyzed locally or remotely.
- Specialized Medical Personnel: receive information remotely about the patients and interacts with the other users and patient located remotely.

Functional Hierarchy Model MoTeU Core Functions

Functional Hierarchy Model

MoTeU Functions Hierarchy Detailed

Functional Flow Diagram MoTeU 1st Level Block Diagram

MoTeU 2nd and 3rd Level Function Block Diagram

Requirements Traceability

N² Diagram

	Operator 1 (Technical)	Operator 2 Nurse	Patients	0.0 Provide Shelter and facilities to Personnel and Equipment	1.0 Stablish communication link	2.0 Register & store patient information	3.0 Send and Receive Data	4.0 Capture and Return voice and video	5.0 Register vital signs	6.0 Take & analyze biological samples	7.0 Capture diagnosis imagery	Send and Receive Data	Capture and Return voice and video	Display vital signs	Register & store patient information	Specialized Medical Personnel	Counter
Operator 1 (Technical)				х	х												4
Operator 2 Nurse			х			х		х	х	х	х						e
Patients		х						х	х	х	х						-
0.0 Provide Shelter and facilities to Personnel and Equipment					х	х	х	х	х	х	х						5
1.0 Stablish communication link	х						x										2
2.0 Register & store patient information		х					х										2
3.0 Send and Receive Data								х	х	х	х	х					5
4.0 Capture and Return voice and video		х	х				х										3
5.0 Register vital signs							х										1
6.0 Take & analyze biological samples							х										1
7.0 Capture diagnosis imagery							х										1
Send and Receive Data							х						х	х	х		4
Capture and Return voice and video																х	1
Display vital signs																х	1
Register & store patient information (remote)												х					1
Specialized Medical Personnel								х						х			2
Counter	1	3	2	1	2	2	8	5	4	4	4	2	1	2	1	2	

Trade Study

Trade Study Function to Evaluate / COTS Alternatives

Function 3.3 "Secure Communications Link" and its subfunctions

COTS Alternatives

Cisco ASA 5500 Series Firewalls

Fortinet Fortigate 80E

Check Point 770 UTM

Meraki MX86

Trade Study Evaluation Factors, Products, Nth Root Value and Normalization

- 1. Operational Throughput with Security Features Activated
- 2. GbE ports
- 3. Weight and Power Consumption
- 4. Multiple WAN Options

CRITERIA	Throughput: FW + AVC + IPS	1GbE Ports (qty)	Weight (kg)	Power Consumption (W)	WAN Options	Row Value Products	Nth root of value products	Normalized Weighting Factor
Throughput: FW + AVC + IPS	1	6	9	2	0.333	36	2.05	0.25
1GbE Ports (qty)	0.167	1	0.5	0.25	0.125	0	0.3	0.04
Weight (kg)	0.111	2	1	0.5	0.143	0.02	0.44	0.05
Power Consumption (W)	0.5	4	7	1	0.125	1.75	1.12	0.14
WAN Options	3	8	8	8	1	1536	4.34	0.53
						Sum of the Nth Roots >	8.24	1

Utility Functions

Throughput: FW + AVC + IPS (Mbps)

Throughput: FW + AVC + IPS (Mbps)	Utility	Rationale
50	0.01	This parameter refers to the effective throughput of the UTM with all the
150	0.6	security options activated. The highest the value expressed in data transfer
200	0.7	units (Mbps) the better because the appliance allows more effective data
300	0.8	traffic rates. Most commercially available UTMs in the market in this
400	0.9	price range have effective throughputs below 600Mbps
500	1	

Power Consumption (W)	Utility	Rationale
70	0.00	The less power consumption the
50	0.33	better due to the effectiveness of
30	0.66	the use of pwer resources when
10	1.00	MoTeU is deployed

1 GbE Ports (Quantity)

1GbE Ports (Qty)	Utility	Rationale
4	0.01	Most of available UTMs in this range of features and price offer an option of multiple gigabit ethernet ports (GbE) which
8	0.70	allow to connect multiple IP devices via wire (UTP) to the UTM. This option simplifies the connectivity in some cases by
10	0.90	reducing the need of an external switch to consolidate connections. These small business / small branch options range from
12	1.00	4 up to 16 ports.

Weight (kg)

Weight (kg)	Utility	Rationale
4	0.00	Lower weight is better due to
3	0.33	conceived as a mobile unite, so the
2	0.67	lower the weight of the appliance the easiest to transport.
1	1.00	•

WAN Options Utility Rationale This devices are capable to have more than one interface to 1 0.00 connect to the Wide Area Network (WAN). The score criteria are defined like this: One GbE WAN Port: 1 2 0.50 Two GbE WAN Port: 2 GbE + LTE WAN options: 3 Since the MoTeU will be located remotely, the more connectivity 3 1.00 options it has to connect with the network, the better.

WAN Options (#)

Power Consumption (W)

Trade Study Evaluations of Alternatives

Trade Study Analysis result MoTeU UTM Options

		Cisco ASA 5516			Fortigate 80E			Che	ckPoint 770L	JTM	Cisco Meraki MX68			
Criteria	wt.	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	
Throughput: FW + AVC + IPS (Mbps)	0.248	450	0.98	0.244	400	0.93	0.232	325	0.85	0.211	450	0.98	0.244	
1GbE Ports (qty)	0.037	8	0.67	0.025	12	1.04	0.038	12	1.04	0.038	10	0.87	0.032	
Weight (kg)	0.053	3	0.33	0.018	1.2	0.93	0.049	1.6	0.80	0.042	1.12	0.96	0.051	
Power Consumption (W)	0.136	30	0.66	0.090	18	0.86	0.117	55	0.25	0.033	19	0.85	0.115	
WAN Options (Quality)	0.526	2	0.50	0.263	2	0.50	0.263	1	0.00	0.000	3	1.00	0.526	
Operational Utility Function (Weighted Sum)			0.640		0.700		0.325			0.968				
Cost (\$) (expressed in USD)			6000			4000			1300		1150			
Cost-Effectiveness Selection Function (weighted Sum / Cost)			0.000107		0.000175		0.000250			0.000842				

Trade Study

Sensitivity Analysis

Sensitivity Analysis 1 Weight of Criteria 1 to Zero

Sensitivity Analysis 2 Weight of Criteria 2 to Zero

			Cisco ASA 5516			Fortigate 80E			Che	ckPoint 770L	JTM	Ciso	o Meraki M	X68
	Criteria	Wt.	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value
	Throughput: FW + AVC + IPS (Mbps)		450	0.98	0.000	400	0.93	0.000	325	0.85	0.000	450	0.98	0.000
/	1GbE Ports (qty)	0.037	8	0.67	0.025	12	1.04	0.038	12	1.04	0.038	10	0.87	0.032
	Weight (kg)	0.053	3	0.33	0.018	1.2	0.93	0.049	1.6	0.80	0.042	1.12	0.96	0.051
	Power Consumption (W)	0.136	30	0.66	0.090	18	0.86	0.117	55	0.25	0.033	19	0.85	0.115
	WAN Options (Quality)	0.526	2	0.50	0.263	2	0.50	0.263	1	0.00	0.000	3	1.00	0.526
	Operational Utility Function (Weighted Sum)			0.395			0.468			0.114			0.724	
1	Cost (\$) (expressed in USD)			6000		4000		1300			1150			
)	Cost-Effectiveness Selection Function (weighted Sum / Cost)			0.000066		0.000117		0.000088			0.000630			

			C	Cisco ASA 5516			Fortigate 80E		CheckPoint 770UTM			Cisco Meraki MX68			
v	Criteria	Wt.	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	
3	Throughput: FW + AVC + IPS (Mbps)	0.248	450	0.98	0.244	400	0.93	0.232	325	0.85	0.211	450	0.98	0.244	
2	1GbE Ports (qty)	0.000	8	0.67	0.000	12	1.04	0.000	12	1.04	0.000	10	0.87	0.000	
_	Weight (kg)	0.053	3	0.33	0.018	1.2	0.93	0.049	1.6	0.80	0.042	1.12	0.96	0.051	
ิล	Power Consumption (W)	0.136	30	0.66	0.090	18	0.86	0.117	55	0.25	0.033	19	0.85	0.115	
a	WAN Options (Quality)	0.526	2	0.50	0.263	2	0.50	0.263	1	0.00	0.000	3	1.00	0.526	
\cap	Operational Utility Function (Weighted Sum)			0.615			0.662			0.286			0.936		
0	Cost (\$) (expressed in USD)			6000			4000			1300			1150		
	Cost-Effectiveness Selection Function (weighted Sum / Cost)			0.000102			0.000165			0.000220			0.000814		

Sensitivity Analysis 3 Weight of Criteria 3 to Zero

			Cisco ASA 5516			Fortigate 80E			CheckPoint 770UTM			Cisco Meraki MX68			
vitv	Criteria	Wt.	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	Raw Score	Utility Value	Weighted Utility Value	
, icy	Throughput: FW + AVC + IPS (Mbps)	0.248	450	0.98	0.244	400	0.93	0.232	325	0.85	0.211	450	0.98	0.244	
s 3	1GbE Ports (qty)	0.037	8	0.67	0.025	12	1.04	0.038	12	1.04	0.038	10	0.87	0.032	
50	Weight (kg)	0.000	3	0.33	0.000	1.2	0.93	0.000	1.6	0.80	0.000	1.12	0.96	0.000	
aria	Power Consumption (W)	0.136	30	0.66	0.090	18	0.86	0.117	55	0.25	0.033	19	0.85	0.115	
JIIa	WAN Options (Quality)	0.526	2	0.50	0.263	2	0.50	0.263	1	0.00	0.000	3	1.00	0.526	
oro	Operational Utility Function (Weighted Sum)			0.622			0.651			0.282			0.917		
EIU	Cost (\$) (expressed in USD)			6000			4000			1300		1150			
	Cost-Effectiveness Selection Function (weighted Sum / Cost)			0.000104		0.000163		0.000217			0.000798				

Conceptual Design

Conceptual Design Physical Context Diagram

The Physical Context Diagram (PCD) shows the proposed distribution of subsystems among with their interactions between them and external entities

Physical Block Diagrams

PBD - MoTeU PhysicalBlock Diagram(Subsystems 1 – 3)

Conceptual Design

Physical Block Diagrams

MoTeU Subsystems 4 -8

Conceptual Design

Physical Block Diagrams

MoTeU Subsystem 9 Management Software

Conceptual Design

Requirements Traceability (Subsystem and Component level) - [Sample]

Subsystem / Component

S1. Shelter Subsystem	S-P-22	The MoTeU shall be able to operate in ranges of temperature between -10 ^o and 50 ^o Celsius	S1C1 Dome
	S-P-23	The MoTeU shall be able to operate in humidity range from 60% to 100%	S1C1 Dome
	S-P-24	The MoTeU shall be able to operate under heavy rainy conditions (above 9000mm of precipitation)	S1C1 Dome
	S-F-25	The MoTeU shall be packaged in the smallest format possible to be transported	S1C4 Protective Case
	S-F-26	The MoTeU shall provide enclosures to safely transport its elements and protect them while on movement	S1C4 Protective Case
	S-F-85	The MoTeU shall provide a rigid structure to safely install lights and other support infrastructure	S1C2 Lights Stand
S2. Power Subsystem	S-F-27	The MoTeU shall be capable to switch from at least two sources of electrical power	S2C5 Electric Distribution Board
	S-F-28	The MoTeU shall be able to monitor the status of the electrical power elements	S2C7 Transponder
	S-F-29	The MoTeu shall be able to distribute electrical power to all the active components as needed	S2C5 Electric Distribution Board
	S-F-30	The MoTeU shall be able to store energy to ensure continous supply of electrical power to active elements	S2C3 Battery
	S-F-89	Teh MoTeU shall be able to monitor and control the electrical power elements via APIs	S2C7 Transponder
	S-F-100	The MoTeU shall be able to be feeded by a off-grid power source	S2C1 Solar panel
	S-F-101	The MoTeU shall be able to control the charge of the bateries in the system	S2C2 Charge Controller
	S-F-102	The MoTeU shall convert from DC to AC	S2C4 Power Inverter
	S-F-103	The MoTeU shall provide redundant source of power	S2C6 Backup Power generator

Test Plan

Test Plan

MoTeU Test Integration Test Approach

The scope of this approach will be focused on the subsystems that are related with communication, data integration, medical equipment and audio & video communications. In this process there are not processes related with the infrastructure, power and shelter

Test Plan

Functional and Integration Testing – Sequence and Description

Test Plan Build 5 IT Network / Subsystems Integration Test

Build 6 Management Subsystem Functional Test

S9C2 Patients Information Module Respiration rate Skin Temperatu Pressure API: Lab results heart Rate Arrythmias Blood API: Sp02 BCG API: :Id :Id AP S7C1 S7C4 Mobile Vitals Mobile Signals Monitoring Laboratory

Test Bed Build 6 (Software)

Verification Cross Reference Matrix (VCRM)

ID	Requirement	Verification Method	Verification Description	Build
T-O-1	The MoTeU shall provide audio and video capabilities to communicate with physicians	Demonstration	Using the entire mock-up of the MoTeU, several audio and video communications will be executed between the simulated MoTeU and remote location	Build 7
T-O-3	The MoTeU shall collect and analyze biological samples (such blood or tissue) onsite	Test	Using the Medical equipment stand-alone equipment and compare it with a reference laboratory result of the same sample	Build 4
T-O-6	The MoTeU shall be cyber resilient to data exfiltration, manipulation, and pivot attacks	Demonstration	A vulnerability assessment of the system would be performed to demonstrate this capability	Build 5
T-O-7	The MoTeU shall allow operators to write and document digitally the information of the patients	Demonstration	A live demonstration of the documentation of patient's data into the GUI of the patient's information management component	Build 6
T-O-8	The MoTeU shall allow operators to access the	Demonstration	A live demonstration of a user accessing	Build 6

Risk Analysis

Risk Analysis Methodology

Risk Analysis

Risk ID	Risk	Classification
1	Inaccurate laboratory results	Development / Technical / Integration
2	Data communication interruption	Development / technical
3	Equipment damaged due to water ingress during transportation	Operational / Environmental
4	System unavailable due to management software failure	Development / technical / technology
5	System undeployable due to high cost	Programmatic / Cost
6	Regulation restrictions	Operational / Organizational
7	Patient information lost in local digital data storage	Operational / Procedural

Risk Analysis Risk 1 – Inaccurate Laboratory Results

Risk Asse	essment					Ri	sk Cı	ube	
	Risk ID	1		5					
	Title	Inaccurate laboratory results		_					
	Description	The laboratory results provided by the	T	₂ 4					
Cause Consequence		mobile laboratory component provide inaccurate data							X
		It could be due to a misconfiguration or failure of the equipment	د ۳ –	¹ 2					1
		Physician will receive inaccurate		1					2
		a bad / mistaken diagnosis			1	2 Coi	3 nseque	4 ence	5

Risk Reduction Plan If successful Description Success Criteria Likelihood Consequence Action 2 5 1 Evaluate COTS equipment that has Acquire success references on which been proven in other the selected COTS mobile lab has implementations been proven 1 2 Perform test to the COTS lab Data provided by the mobile lab 5 equipment to compare its results matches the data obtained by using with proven results a known lab equipment 3

Risk 2 Data communication Interruption

Risk Assessment

Risk ID	2
Title	Data communication interruption
Description	The data communication is interrupted leaving the MoTeU without connectivity
Cause	It could be due to a failure on the communication equipment or an interruption on the service provided
Consequence	The MoTeU won't have communication with physicians remotely

Risk Reduction Plan

Action	Descript	ion	Success Criteria		Likelihood	Consequence
1	Consider a redundancy link proposed to have communication channel	v in the data e at least 2 Ls	A proven design that can ensure continual communication despite failure of one of the communica channels	the tion	2	4
2	Consider a technology prioritize data traff its characteristics	/ that can Fic based on	The system being able to identi failure on one link and optimiz data transfer over the remainin	2	3	
3	Demonstrate the capab system to prioritize	oility of the traffic	On a real simulation of the communication subsystem, demons the capability of data prioriti	2	2	
Hiį	gh 🗴					
Medi	um 1					
Lo	W	2		3		
	Conceptual	Design	Design & Integration	Test	& Evaluation	<u></u>

Conclusion

Next Steps

- Plan to [get resources] to build a prototype of the MoTeU's main Communications and Health components
 Review the viability with governmental and Non Profit Organizations
- Deeper participation of SMEs to refine requirements and add more capabilities
- Deeper commercial exploration to seek for COTS components that could be integrated with the MoTeU
- Refining the software components and integrate with early prototypes

Lessons Learned

- Knowledge of SE tools could be really helpful
 - Such "CORE", it may reduce greatly the time spend in traceability and reports
 - It should be included in the program (maybe an elective?)
- Time Management
 - Not only the time invested in the project itself, but the time spend revisiting notes from courses and textbooks!
 - Difficult to manage a self paced progress while working
- SMEs support is key
- There are aspects way beyond the technical / engineering (such regulatory and legal) that may be considered if one wants to move forward
- SE Methodology can be applied to pretty much anything

SE Program Feedback

- Deep understanding of Systems Engineering Meaning, Methodology and its applications
- It provided a whole new professional perspective
 It reminds me how much I like engineering
- Challenging!
 - Study load
 - Language barrier
 - Time management
- It used to be highly US Gov / Military focused, now it has a wider approach

© The Johns Hopkins University 2018, All Rights Reserved.

BACKUP SLIDES

Need Analysis

Information Collection – Characterization of the Environment on which MoTeU will operate (Temp)

The topography in Colombia is very diverse due to its geographical location. The country is located at the north of South America, just above the equator, meaning that the variances in weather are not determined by the northern or southern hemispheres' seasons, but on height and seasonal period (such rain or dry) of the year, that means that average temperatures in an specific region are more or less constant during the year

Hence, the variances in temperature in a specific region never goes over 4 degrees Celsius, nonetheless, all year long there are temperatures ranging from subzero degrees Celsius to over 40+ degrees Celsius

Need Analysis

Information Collection – Characterization of the Environment on which MoTeU will operate (Precipitation & Humidity)

In terms of rain, there are also a highly contrasting variances among the regions, with very dry areas such the north of the country (La Guajira) and extremely rainy regions such the west (pacific) coast. A similar situation occurs with humidity levels, however, is worth to notice that most of the country presents humidity percentages of above 80 %

Humidity of the Air (%)

54

Precipitation Levels per region (mm)

Need Analysis

Information Collection – Characterization of the Transport Infrastructure on which MoTeU will mobilize

The transport infrastructure capability varies from region to region. Whereas in the central west and north territories is well developed and there's road access to most of the subregions, the south and east (in fact almost half of the national territory) lacks of any types of roads at all, is these regions the transportation is mainly done through rivers which cover the entire territory. The following maps depicts the road infrastructure coverage and the Colombian river basins respectively:

Colombian river basins

Test Plan Build 1 - Communication Subsystem Functional Test

The test will require access to the communication equipment provided by the ISP, typically a modulator-demodulator (modem), an antenna for each type of service (LTE and Satellite) and the corresponding cabling (coaxial). From each one of the modems, a laptop connected through a Catt6 RJ45 cable and running any commercially available operative system such Apple's macOS, Windows or Linux will run the following tests as follows:

- Latency
- Jitter
- Packet Loss

It's is expected that this test will run under a controlled laboratory environment, although it's important to ensure that the area on which it will take place has coverage from the ISP that's offering the service. Several test will be taking under the course of a determined time lapse, it is proposed one week, at different times during the day. Results will be stored and documented for further review.

Test Plan Build 2 – It Network Subsystem Functional Test

Build 2 is focused on test the performance of the IT Network as an independent subsystem. During this test the components of the IT Network Subsystem will be assembled and proven in its optimal operational conditions based upon manufacturer recommendations. Figure 5.4 depicts the test bed for Build 2. On it, the Router with UTM (Unified Threat Manager) is connected via a RJ45 Category 6 cable to an ethernet switch. A single access point will be connected via RJ45 Category 6 to the switch as well. A computer will be connected using the management (console) to the switch and the access point.

Test Plan Build 3 – Audio / Video Subsystem Functional Test

This build will focus on testing the components responsible for capture and reproduce audio and video for remote communication, often known as "telepresence unit". These commercially available (COTS) units typically are assembled from the manufacturer and came as one unit with all the peripherals included. In this test, the claimed specification of the equipment with will be demonstrated by simulating a point to point connection between two telepresence endpoints.

Test Plan Build 4 – Med. Equipment Subsystem Functional Test

The medical equipment subsystem groups all the components aimed to gather medical information from patients accessing MoTeU for diagnosis and treatment. These components are capable to register vital signals, imagery and provide laboratory analysis based on biological samples such blood or tissue. During this test, it is proposed that two COTS products will be evaluated in order to determine its performance: **Sotera Wireless**: This product offers a series of sensors that can provide information regarding the vital sign of a patient, including the following:

- SpO₂ / Pulse Rate
- ECG / Heart Rate
- Respiration Rate
- Skin Temperature
- Non-invasive Blood Pressure (NIBP)
- Continuous Non-Invasive Blood Pressure (cNIBP)

<u>Accuster – Mobile Lab</u>: This product offers a mobile laboratory option capable to take a large range of test analysis and convert the information in digital format to be analyzed, stored and transmitted. Figure 5.5 shows a list of the available tests available by Accuster's solution