
Hadoop – A Perfect
Platform for Big Data

and Data Science
Copyrighted Material	

Agenda
•  Data Explosion
•  Data Economy
•  Big Data Analytics
•  Data Science
•  Historical Data Processing Technologies
•  Modern Data Processing Technologies
•  Hadoop Architecture
•  Key Principles Hadoop
•  Hadoop Ecosystem

2

Presentation Goal

•  To give you a high level of view of Big
Data, Big Data Analytics and Data
Science

•  Illustrate how how Hadoop has become a
founding technology for Big Data and
Data Science

3

Data Explosion

“Big” Data in the News

5

Data Creation
•  Visually Illustrates

how much data is
generated per
minute.

6

Source : 	

	

http://
schoollibrarybeyondsurvival.files.wordpress.co
m/2012/06/dataneversleeps_4fd61ee2eda5a.jpg	

Why so much data is being
Generated today?

7

1975 Today

2000 “online” users = End Point

U
se

rs
	

A
pp

lic
at

io
ns
	

2000 “online” users = Start Point

Static User Population Dynamic user population

Business Process Automation Business Process Automation

Highly structured data records Structured, semi-structured and
unstructured data

Data networking in its infancy Universal high-speed data networks

Centralized computing
(Mainframes and minicomputers)

Distributed computing (Network
servers and virtual machines)

In
fra

str
uc

tu
re
	

Data in an Enterprise
•  Existing OLTP Databases

–  Organizations have several OLTP databases for the various
products and services they offer

•  User Generated Data
–  Many social networking, blogging sites allow for users to

generate their own data
•  Blogs, tweets, links
•  Videos, audios

•  Logs
–  Enterprise and Internet scale applications may have several

servers that generate log files
•  Ex. Access log files

•  System generated data
–  Many services inside an enterprise generate syslogs that may

have to be processed 8

Data in Personal Computing
•  Let’s compare my PC from 1984

9

My PC in
1984

My PC today Factor

CPU Speed 1MHz 3GHz

Ram 256K 4GB

Transmission
Rate

30B/s 1MB/s

Hard Disk
Capacity

1MB 1TB

3000

15,000

30,000

1,000,000

Data Volumes are Growing

10

Data Economy

The Revolution in the Marketplace –
The Shift

12

Hardware
Was King

Software
Becomes King

Data is the
New King

2010 2005 2000 1995 1990 1985 1980 1975 1970 1965 1960 1955

What are Data Driven
Organizations?

13

A data driven organization
 that acquires data,
 that processes data,
 and leverages data in a timely fashion
 to create efficiencies,
 iterate on and develop new products and
 navigate the competitive landscape

Data Driven Organizations Use Data
Effectively

14

Data Driven
Organizations

Organizations that use Data to
augment their Business

Big Data Business is Big Business

Big Data 	

Hardware	

Manufactures	

Big Data 	

public Cloud 	

Platform 	

Providers 	

(hw+sw)	

Data 	

Aggregators	

+ Enablers	

	

Data 	

Generators	

+ Aggregators	
	

Big Data BI 	

+ Data 	

Analytics sw	

+ Tool Vendors	

Big Data 	

Cloud Platform 	

Software	

Data	

As 	

A	

Ser	

-vice	

P	

A	

A	

S	

 I	

A	

A	

S	

Information Science Is Affecting
Every Industry

16

Biotech/Healthcare Linguistics Mining

Finance Journalism/Visualization Education

http://www.youtube.com/watch?
v=VwgkT34g61w	

http://www.cloudera.com/blog/2012/01/
seismic-data-science-hadoop-use-case/	

http://www.youtube.com/watch?
v=uuUa4FEGvzo	

http://www.youtube.com/watch?
v=GWF2SU7UWs8	

http://www.youtube.com/watch?
v=1-C0Vtc-sHw	

Wake up - This is a Data Economy!
•  We are in the midst of Information Science in the

making.

•  Not long ago data was expensive. There wasn’t
much of it. Data was the bottleneck for much of
human endeavor.

•  No limit to how much valuable data we can collect!

•  We are no longer data-limited, but insight limited.
The people who know how to work with data are in
short supply.

17

Big Data Analytics

source: http://merriman-webster.com

da-ta noun pl but singular or pl in constr, often attributive \ˈdā-təә, ˈda- also ˈdä-\

–  Factual information (as measurements or

statistics) used as a basis for reasoning,
discussion, or calculation

–  Information output by a sensing device or organ
that includes both useful and irrelevant or
redundant information must be processed to
be meaningful

–  Information in numerical form that can be
digitally transmitted or processed

What is Data?

Big Data Characteristics (Three Vs)
•  Volume

–  Data volume on the rise
–  44x increase from 2010 to 2020

•  Expected to go from 1.2zetabytes to 35.2zb

•  Velocity
–  Speed at which the data needs to be transformed and processed is

essential

•  Variety
–  Greater variety/types of data structures to mine

•  Structured
•  Semi-structured

20

Big Data Characteristics: Data
Structures

21

M
or

e
St

ru
ct

ur
ed
	
 Structured	

Semi-Structured	

“Quasi”Structured	

Unstructured	

•  Data containing a defined data type, format,
structure	

•  Example: Transaction data in OLTP and OLAP	

•  Textual data with discernable pattern,
enabling parsing	

•  Example: XML data files that are self
describing by xml schema	

•  Data that has no inherent structure and
is stored as different types of files	

•  Text documents, PDFs, images, video	

•  Textual data with erratic data format, can
be formatted with effort tools and time	

•  Example, web clickstream data that may
have some inconsistencies in data values
and formats	

Business Drivers for Analytics
•  Many business Problems provide opportunities for

organizations to become more analytical & data
driven

22

Driver Examples

Desire to optimize business
operations

Sales, pricing, profitability,
efficiency
Example: amazon.com, Walmart

Desire to identify business risk Customer churn, fraud, default
Example: insurance, banking

Predict new business opportunities Upsell, cross-sell, best new
customer prospects
Example: amazon.com

Comply with laws or regulatory
requirements

Anti-Money Laundering, Fair
Lending, Basel II (Operational Rick
Management in Banks)
Example: finance

Traditional Data Analytics vs. Big
Data Analytics

23

Traditional Data Analytics Big Data Analytics

TBs of Data

Clean Data

Often Know in advance the questions to ask	

Design BI/DW around questions I ask

PBs of Data/Lots of Data/Big Data

Clean Data/Messy Data/Noisy Data	

Often Don’t know all the questions I want to ask	

????	

Typically, answers are probabilistic in nature	

Need distributed storage and computation	

Structured and Unstructured	

Dealing with dozens of domain data sets	

Typically, answers are factual

Architecture doesn’t lend for high computation

Structured	

Dealing 1-2 domain data sets 	

Traditional Data Analytics vs. Big
Data Analytics

24

Traditional Data
Analytics Big Data Analytics

Hardware Proprietary Commodity

Cost High Low

Expansion Scale Up Scale Out

Loading Batch, Slow Batch and Real-Time, Fast

Reporting Summarized Deep

Analytics Operational Operational, Historical, and Predictive

Data Structured Structured and Unstructured

Architecture Physical Physical or Virtual

Agility Reactive Proactive, Sense and Respond

Risk High Low

“Data is the oil of the 21st century”

- Gartner

Quotable Quotes about Big Data

“Data is the crude oil of the 21st century. You
need data scientists to refine it!”

- Karthik

Data Science

What is Data Science?

27

Using (multiple) data elements, in
clever ways, to solve iterative
data problems that when
combined achieve business
goals, that might otherwise be
intractable

Data Science – Another Look!

28

Domain
Expertise

Machine
Learning

Data
Science

Adapted from Drew
Conway - http://
www.drewconway.com/
zia/?p=2378

Languages
Java

Python
Shell
Perl

Distributed
Computing
Hadoop
HDFS
Map/Reduce

4GL
Pig

Hive
R

SQL

Machine
 Learning

Mahout
Weka

Visualization
Gaffle
HighCharts
d3.js
MatLib

Traditional
DW

OracleDW

Data Scientist

Data Scientist = Curiosity
 + Intuition
 + Data gathering
 + Standardization
 + Statistics
 + Modeling
 + Visualization

What Makes a Data Scientist?

How do I become a Data Scientist?
•  Some things you can do:

–  Learn about distributed computing
–  Learn about matrix factorizations
–  Learn about statistical analysis
–  Learn about optimization
–  Learn about machine learning
–  Learn about information retrieval
–  Learn about signal detection and estimation
–  Master algorithms and data structures

31

Source: http://www.quora.com/Career-Advice/How-do-I-become-a-data-scientist	

Enroll at JHU EP Program.	

Take courses on Data Science and Big data
Online or Face to Face!!!	

Web Site Interaction
=

data Parse
Normalize

Standardize

Normalized Data
=

Information
Knowledge

Report

Knowledge Insights Wisdom

Going from Data ! Wisdom

Historical Data
Processing

Technologies

Supercomputers

34

1977: CRAY-1A was used by NCAR(National Center for Atmospheric Research)
to meet the needs of the atmospheric science community. Not in use any more.	

Grid/Distributed Computing

35

RDBMS Computing
•  Big Idea

–  Use a single server with attached storage for storing and processing
data since they have to honor ACID properties

•  Typically “scaled-up” (not scaling-out) by getting
bigger/more powerful hardware

•  Scale-out achieved by Sharding, Denormalizing,
Distr. Caching, which have their own cons

•  Sharding requires you create and maintain schema on every server
•  Denomalizing loses some of the benefits of relational model
•  Distributed Cache suffers from “cold cache thrash”

36

Historical/Traditional technologies don’t work
because …

37

VeriSign Compute Cluster– Karthik
Shyamsunder	

All data cannot fit in a single machine and all
processing cannot be done on a single machine Image: Matthew J. Stinson CC-BY-NC

Philosophy behind Distributed
Computing
•  “In pioneer days they used oxen for heavy

pulling, and when one ox couldn’t budge a
log, they didn’t try to grow a larger ox. We
shouldn’t be trying for bigger computers,
but for more systems of computers”
 - Grace Hopper, Computer Scientist and General in Navy

For Big Data Processing Scale is
Important

40

Whatever system we choose, it has to scale for big data
and big data processing and it has to be economical!	

Big Data Computing in
the Modern World

Modern Computing Benefits/Trends
•  Faster processing (CPU) and more memory

–  Thanks to Moore’s law
•  Storage has become cheaper

–  Organizations are buying more storage devices to deal with
huge amounts of data

•  Distributed systems design has matured
–  Hadoop movement, NoSQL movement

•  Prevalence of Open-source software
–  A movement that started 20 years ago has yielded some of the

best software, even better than proprietary software
•  More and more Commodity hardware

–  Systems of commodity servers rather than supercomputers
•  Public Cloud computing

–  Companies like Amazon, Google are providing cloud options
42

Modern Computing Challenges
•  Disks I/O is slow

–  Servers typically use cost effective
mechanical disks which are slow

•  Disks fail
–  Wear and tear, manufacturing issues,

stuff happens…

•  Not enough network

bandwidth within data
centers to move all the bits
around
–  Once the data is read, transmitting

data within datacenter or across is
slow 43

Solutions to Disk/IO Challenges

44

•  Organizations use striping and mirroring
together called RAID configuration
–  RAID stands for Redundant Array of Inexpensive disks
–  Use Striped (RAID0) and Mirrored (RAID1) configuration

Striped	
 Mirrored	

Hadoop

Hadoop History Timeline

 	

What is Apache Hadoop?
•  An open source project to manage “Big Data”

•  Not just a single project, but a set of projects
that work together

•  Deals with the three V’s

•  Transforms commodity hardware to

–  Coherent storage service that lets you store petabytes of data
–  Coherent processing service to process data efficiently

47

Key Attributes of Hadoop
•  Redundant and reliable

–  Hadoop replicates data automatically, so when machine goes
down there is no data loss

•  Makes it easy to write distributed applications

–  Possible to write a program to run on one machine and then
scale it to thousands of machines without changing it

•  Runs on commodity hardware
–  Don’t have to buy special hardware, expensive RAIDs, or

redundant hardware; reliability is built into software

48

Hadoop – The Big Picture

49

Computation (YARN)	

Storage(HDFS)	

Unified
computation
provided
MapReduce	

distributed 	

computing
framework	

Unified storage
provided by
distributed file
system called
HDFS	

Commodity
Hardware	

Hardware contains
bunch of disks and
cores 	

Physical	

Logical	

Hadoop Technology Stack

50

Common Libraries/Utilities	

HDFS Distributed Storage	

MapReduce Distributed Processing	

Hive 	

Query	

Pig	

Script	

A
ncillary Projects	

A
m

bari, Avro, Flum
e, O

ozie, 	

Zookeeper etc.	

YARN Distributed Processing	

H
Base	

N
O

SQ
L D

B	

YA
RN
	

Fram
ew

orks	

Core Hadoop Modules	

Ancillary Projects	

Master	

Slave	

HDFS Architecture

51

DataNode	

NameNode	

Client	

Secondary	

NameNode	

Slave	

51

DataNode	

Slave	

51

DataNode	

Clients Read and W
rite	

D
ata from

 D
ataN

ode 	

Clients perform Metadata operations like 	
create/delete file/dir and read metadata	

DataNodes 	

replicate 	

data to each other	

YARN Architecture

YARN Architecure (MRv2)

53

NodeManager	

App	

Master	

Container	

NodeManager	
 NodeManager	

ResourceManager	

Client	

Master	

Slave	
 Slave	
 Slave	

Container	

Container	
Container	

Container	

HDFS + YARN

54

NodeManager	

App	

Master	

Container	

NodeManager	
 NodeManager	

ResourceManager	

Client	

Slave	

Container	

Container	
Container	

Container	

DataNode	
 DataNode	
 DataNode	

NameNode	

Master	

Slave	
 Slave	

Key Principles
Behind Hadoop

Architecture

Key Principles behind Hadoop
•  Break disk read barrier
•  Scale-Out rather than Scale-UP
•  Bring code to data rather than data to code
•  Deal with failures
•  Abstract complexity of distributed and

concurrent applications

56

Break Disk Read Barrier
•  Storage capacity has grown exponentially but

read speed has not kept up
–  1990:

•  Disk Store 1,400 MB
•  Transfer speed of 4.5MB/s
•  Read the entire drive in ~ 5 minutes

–  2010
•  Disk Store 1 TB
•  Transfer speed of 100MB/s
•  Read the entire drive in ~ 2.5 hours

•  What does this mean?
–  We can process data very quickly, but we cannot read fast

enough, so the solution is to do parallel reads
•  Hadoop - 100 drives working at the same time

can read 1TB of data in 2 minutes
57 Source: Tom White. Hadoop: The Definitive Guide. O'Reilly Media. 2012	

Scale-Out Instead of Scale Up
•  Harder and more expensive to scale-up

–  Add additional resources to an existing node (CPU, RAM)
Moore’s Law couldn’t keep up with data growth

–  New units must be purchased if required resources can not be
added

–  Also known as scale vertically
•  Scale-Out

–  Add more nodes/machines to an existing distributed
application Software Layer is designed for node additions or
removal

–  Hadoop takes this approach - A set of nodes are bounded
together as a single distributed system

–  Very easy to scale down as well

58

Use Commodity Hardware
•  “cheap” Commodity Server Hardware

–  Definition of “cheap” changes on a yearly basis
–  Today, it would cost about $5000

•  32GB RAM, 12 1 TB hard drive, quad core CPU
•  No need for super computers with

high-end storage, use commodity
unreliable hardware
–  Not desktops!

59

NOT	
 BUT	

Super-computers with high end storage	
 Rack of Commodity Servers	

Googles’s
Original
Chalkboard
Server Rack

60

Data to Code = Not fit for Big Data
•  Traditionally Data Processing Architectures

divided systems into process and data nodes
–  Risks network bottleneck

61

Processing 	

Node	

Storage	

Node	

Load Data 	

Save Results	

Processing 	

Node	

Storage	

Node	

Load Data 	

Save Results	

Risk Bottleneck	

Code to Data
•  Hadoop collocates processors and storage

–  Code is moved to data (size is tiny, usually in KBs)
–  Processors execute code and access underlying local storage

62

Processor 	

Storage	

Hadoop Node	

Processor 	

Storage	

Hadoop Node	

Processor 	

Storage	

Hadoop Node	

Processor 	

Storage	

Hadoop Node	

H
adoop Cluster	

Deal With Failures
•  Given a large number machines, failures are

common
–  Large warehouses see machine failures weekly or even daily
–  Example

•  If you have hardware whose MTTF (Mean Time to Failure is
once in 3 years), if you have a 1000 machines, you will see a
machine fail daily

•  Hadoop is designed to cope with node failures
–  Data is replicated
–  Tasks are retried

63

Abstract Complexity
•  Abstracts complexities in developing

distributed and concurrent applications
–  Defines small number of components
–  Provides simple and well defined interfaces of interactions

between these components

•  Frees developer from worrying about system-
level challenges
–  race conditions, data starvation, processing pipelines, data

partitioning, code distribution, etc...

•  Allows developers to focus on application
development and business logic

64

Hadoop Ecosystem

Hadoop Technology Stack

66

kafka	
Open MPI	

Ambari	

Categorizing Hadoop Tech Stack
•  Data Integration

–  SQOOP, Flume, Chukwa, Kafka

•  Data Serialization
–  Avro, Thrift

•  Data Storage (NOSQL)
–  HBase, Cassandra

•  Data Access/Analytics
–  Pig, Hive

•  Data Access/Analytics +
–  Giraph, Storm, Drill, Tez,, Spark. 67

•  Management
–  Ambari

•  Orchestration
–  Zookeeper, Oozie

•  Data Intelligence
–  Mahout

•  Security
–  Knox, Sentry

•  Hadoop Dev Tools
–  HDT

Hadoop Distributions

68

•  Offered first commercial distribution
–  Cloudera:Hadoop Redhat:Linux

•  100% open source Hadoop with a twist
–  Proprietary admin/management console

•  Cloudera Hadoop Distribution is called CDH
–  CDH = Cloudera Distribution for Hadoop

•  Offered second commercial
distribution

•  100% open source Hadoop with a
twist

–  Proprietary C++ based filesystem
–  Proprietary admin/management

console
•  MapR Hadoop Distribution is

called Mseries
–  M3, M5, M7

•  Third commercial distribution
–  Founded for ex-Yahoo Hadoop experts
–  Spin-off Yahoo

•  100% open source Hadoop without any twist
–  100% open source when it comes to Hadoop software
–  100% open source admin/management tool called Ambari

•  Hotonworks Hadoop Distribution is called HDP
–  HDP = Hortonworks Data Platform

Cloud Hadoop

69

Summary
•  Data being generated at a tremendous rate

•  Emerging field of Big data analytics and data
science

•  Businesses using both traditional data analytics
and data science

•  Traditional data processing not suitable for “Big
Data” Processing

•  Hadoop has become founding technology for Big
data processing, Analytics, and Data Science!

70

71

Hadoop – A Perfect
Platform for Big Data

and Data Science
Copyrighted Material	

Steps to Write a
MapReduce Program

MapReduce Programming Model

75

The Problem
•  Given a directory called /in in hdfs that

contains a bunch of great books as text files,
List all unique words used in all books and
their respective counts

76

Solution Design

77

Solution Design – Job Input
•  Input location

–  /in folder contains a list of books in text format

•  Input format
–  Lines of text
–  Since text file, TextInputFormat class
–  Key is LongWritable
–  Value is Text

78

Solution Design – Mapper
•  Map Input

–  Key is byte offset within the file
Type is LongWritable

–  Value is line of text
•  Type is Text

•  Map Process
–  Ignore the key
–  Parse the value (line of text)

•  For each word, print the word and a count of 1(one)

•  Map Output
–  Key is word

•  Type is Text
–  Value is count of 1 (one)

•  Type is IntWritable 79

Solution Design – Reducer
•  Reduce Input

–  Key is word
•  Type is Text

–  Value is list of 1s (ones)
•  Type is Iterable of IntWriable

•  Reduce Process
–  Add up the 1s (ones) to a variable called count

•  Reduce Output
–  Key is word

•  Type is Text
–  Value is count

•  Type is IntWritable

80

Solution Design – Job Output
•  Output location

–  /out will contain the output from reducer

•  Output Format
–  Text file
–  Lines of text makes a record
–  Key is word
–  Value is count
–  Key value separated by a tab

81

Steps to Write a MapReduce
Program

1.   Implement the Mapper
2.   Implement the Reducer
3.   Configure the Job
4.   Compile the classes
5.   Package the classes
6.   Run the Job

82

1. Implement the Mapper
•  Create a class that extends Mapper class with 4

parameters
1.  Map input key
2.  Map input value
3.  Map output key(Should be same as Reducer input key)
4.  Map output value(Should be same as Reducer input value)
–  Map Output key has to be WritableComparable
–  Rest of the parameters should be Writable at a minimum

83

1. Implement the Mapper
•  Override and Implement the map() method

–  Retrieve the passed input key and value
–  Write the logic necessary to do the processing
–  Use the passed Context to write the corresponding Mapper

output key and value

84

2. Write the Mapper Class
public class WordCountMapper !

!extends Mapper<LongWritable, Text, Text, IntWritable> { !
 !
 IntWritable one = new IntWritable(1);!
 Text word = new Text();!
 !
 @Override!
 protected void map(LongWritable key, Text value, Context context)!

! ! throws IOException, InterruptedException {!
 String line = value.toString();!
 StringTokenizer tokenizer = new StringTokenizer(line);!
 while (tokenizer.hasMoreTokens()) {!
 word.set(tokenizer.nextToken());!
 context.write(word, one);!
 }!
 !
 } !
}!

85

2. Implement the Reducer
•  Write a class that extends Reducer class with 4

parameters
1.  Reduce input key (Should be same as Map input key)
2.  Reduce input value (Should be same as Map input value)
3.  Reduce output key
4.  Reduce output value

–  Input key classes should be WritableComparable

86

2. Implement the Reducer
•  Override and Implement the reduce() method

–  Retrieve the passed input key and list of values
–  Write the logic necessary to do the processing
–  Use the passed Context to write the corresponding Reducer

output key and value

87

2. Implement the Reducer
public class WordCountReducer !

!extends Reducer<Text, IntWritable, Text, IntWritable> {!
!
 int i = 0;!
 IntWritable count = new IntWritable();!
 !
 @Override!
 protected void reduce(Text key, Iterable<IntWritable> values, !

!Context context) throws IOException, InterruptedException {!
 !

!i = 0;!
 for (IntWritable val : values) {!
 i = i + 1; !
 }!
 count.set(i);!
 context.write (key, count);!
!
 } !
}!

88

3. Configure the Job
•  Configure Job in driver class and submit

•  Instantiate a Job object
–  Several factory style get methods to get a Job instance

•  Job.getInstance()
–  Used the default configuration object

•  Job.getInstance (conf)
•  Job.getInstance(conf, “jobname”)

–  Jobname is useful to track in the admin console
–  Possible to set the job name explicitly

•  job.setName(jobName)

89

3. Configure the Job - Input
•  Specify the Input path

–  Could be file, directory or file pattern
•  Directory or file patterns are converted to a list of files as input

–  In this case getting the path from command line args
–  TextInputFormat.addInputPath(job, new Path(args[0]));

•  Can call addInputPath() several times for file, dir, or pattern

•  Specify the Input data format
–  Input is specified in terms of InputFormat

•  Responsible for creating splits and a record reader
–  In this case TextInputFormat

•  Controls input types of key-value pairs, in this case LongWritable
andText

•  File is broken into lines, mapper will receive 1 line at a time
–  job.setInputFormatClass(TextInputFormat.class);

90

3. Configure the Job - Process
•  Set the Mapper and Reducer classes

–  job.setMapperClass(class);
–  job.setReducerClass(class);

•  Specify which jar for the Job
–  job.setJarByClass(class);

91

3. Configure the Job - Output
•  Specify the Output path

–  Should be a directory
–  Output directory should not already exist
–  FileOutputFomat.setOutputPath(path)

•  Specify the Output data format
–  Output is specified in terms of OutputFormat
–  For text files, it is TextOutputFormat
–  job.setOutputFormatClass(TextOutputFormat.class);

•  Specify the Output key-value classes
–  job.setOutputKeyClass(keyClass);
–  job.setOutputValueClass(valueClass);

92

3. Configure the Job - Output
public class WordCount {

 public static void main(String args[]) {
 Job wordCountJob = null;
 wordCountJob = Job.getInstance
 (new Configuration(), "WordCount");

 // Specify the Input path
 FileInputFormat.addInputPath(wordCountJob, new Path(args[0]));

 // Set the Input Data Format
 wordCountJob.setInputFormatClass(TextInputFormat.class);

 // Set the Mapper and Reducer Class
 wordCountJob.setMapperClass(WordCountMapper.class);
 wordCountJob.setReducerClass(WordCountReducer.class);

 // Set the Jar file

 wordCountJob.setJarByClass(WordCount.class);

 // Set the Output path
 FileOutputFormat.setOutputPath(wordCountJob,

 new Path(args[1]));

 93

3. Configure the Job - Output

 // Set the Output Data Format
 wordCountJob.setOutputFormatClass(TextOutputFormat.class);

 // Set the Output Key and Value Class
 wordCountJob.setOutputKeyClass(Text.class);
 wordCountJob.setOutputValueClass(IntWritable.class);

 // Submit the job
 wordCountJob.waitForCompletion(true);

 }

}

94

4. Compile the Classes
•  Compile Mapper, Reducer and Main job classes

•  Include Hadoop classes in CLASSPATH
–  All hadoop jar files
–  Dependent jars in the lib folder

•  Include App dependent classes in CLASSPATH
–  If mappers and reducers require other dependent libraries, you need

to include them in the CLASSPATH too

95

5. Package the Classes
•  Hadoop requires all jobs packaged as single jar

–  Hadoop framework distributes jar file to nodes

•  Specify in code which jar file to distribute
–  Specify jar of your job by calling job.setJarByClass

•  job.setJarByClass(getClass());
–  Assuming the current class is part of the job of course

–  Hadoop will locate the jar file that contains the provided class

•  Dependent jars should be packaged within big jar
–  Dependent jars are expected to be placed in lib/ folder inside jar file

96

6. Run the Job
•  Two ways to run the program

1.  Traditional java command
•  You have to set HADOOP CLASSPATH

$ java –classpath mapreduce-basics.jar:…
bdpuh.mapreducebasics.WordCount /in /out

2.  Use the more convenient yarn command
•  Adds Hadoop’s libraries to CLASSPATH

$ yarn jar mapreduce-basics.jar
bdpuh.mapreducebasics.WordCount /in /out

• 
97

The Output Files
•  Output directory will have resultant files

–  _SUCCESS
•  Indicating job was successful, otherwise file will not be present

–  Reducer output files with format “part-r-nnnnn”
•  nnnnn is an integer representing reducer number
•  Number is zero based

98

Steps to Write a
MapReduce Program

