This course presents a unified perspective on optical propagation in linear media. A basic background is established using electromagnetic theory, spectroscopy, and quantum theory. Properties of the optical field and propagation media (gases, liquids, and solids) are developed, leading to basic expressions describing their interaction. The absorption line strength and shape and Rayleigh scattering are derived and applied to atmospheric transmission, optical window materials, and propagation in water-based liquids. A survey of experimental techniques and apparatus is also part of the course. Applications are presented for each type of medium, emphasizing remote sensing techniques and background noise. Computer codes such as LOWTRAN, FASCODE, and OPTIMATR are discussed. Prerequisite(s): Undergraduate courses on electromagnetic theory and elementary quantum mechanics. A course on Fourier optics is helpful.
Course Offerings
Open
Optical Propagation, Sensing, and Backgrounds
01/23/2025 - 05/01/2025
Thur 7:20 p.m. - 10:00 p.m. |