Course Number
625.620
Course Format
Synchronous Online

This course familiarizes the student with modern techniques of digital signal processing and spectral estimation of discrete-time or discrete-space sequences derived by the sampling of continuous-time or continuous-space signals. The class covers the mathematical foundation needed to understand the various signal processing techniques as well as the techniques themselves. Topics include the discrete Fourier transform, the discrete Hilbert transform, the singular-value decomposition, the wavelet transform, classical spectral estimates (periodogram and correlogram), autoregressive and autoregressivemoving average spectral estimates, and Burg maximum entropy method. Prerequisite(s): Mathematics through multivariate calculus, matrix theory, or linear algebra, and introductory probability theory and/or statistics. Students are encouraged to refer any questions to the instructor.

Course Offerings

There are no sections currently offered, however you can view a sample syllabus from a prior section of this course.