This is a design course in which the design projects will be to develop pharmacokinetic models of the human body that can be used to understand the temporal distribution, spatial distribution and bioavailability of pharmaceutical drugs. The course (and software to be developed) will cover the spectrum of factors affecting pharmaceutical bioavailability including drug formulation, mode of dosing and dosing rate, metabolism and metabolic cascades, storage in fatty tissues, and diffusional limitations (such as in crossing the blood-brain barrier or diffusional differences between normal and cancerous cells). The goal is to develop process models of the human body that will predict pharmaceutical bioavailability as a function of time and organ (or cell) type that will work for a wide variety of pharmaceuticals including small molecules, biologics, and chemotherapy agents. This course is organized to replicate group project work as it is practiced in industry. The class is divided into groups (typically 3 or 4 students) and each group will meet separately each week with the instructor. Hence, there is no regularly scheduled class times; student groups sign up for weekly meeting times using Starfish in Blackboard. These meetings typically will be 90 minutes long. The expectations and assignments for this course are quite different from most other courses. There are no weekly lectures by the instructor. Rather, each week each group will make a PowerPoint presentation on the week’s topic or their progress on their project.